Alisa S. Postovalova M.Sc , Yulia A. Tishchenko B.Sc , Maria S. Istomina M.Sc , Timofey E. Karpov M.Sc , Sergei A. Shipilovskikh Ph.D , Daria Akhmetova M.Sc , Anna Rogova M.Sc , Nina V. Gavrilova M.Sc , Alexander S. Timin Ph.D
{"title":"比较无机纳米载体和有机纳米载体在不同类型肿瘤中的被动靶向给药。","authors":"Alisa S. Postovalova M.Sc , Yulia A. Tishchenko B.Sc , Maria S. Istomina M.Sc , Timofey E. Karpov M.Sc , Sergei A. Shipilovskikh Ph.D , Daria Akhmetova M.Sc , Anna Rogova M.Sc , Nina V. Gavrilova M.Sc , Alexander S. Timin Ph.D","doi":"10.1016/j.nano.2024.102753","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we have considered four types of nanoparticles (NPs): polylactic acid (PLA), gold (Au), calcium carbonate (CaCO<sub>3</sub>), and silica (SiO<sub>2</sub>) with similar sizes (TEM: 50–110 nm and DLS: 110–140 nm) to examine their passive accumulation in three different tumors: colon (CT26), melanoma (B16-F10), and breast (4T1) cancers. Our results demonstrate that each tumor model showed a different accumulation of NPs, in the following order: CT26 > B16-F10 > 4T1. The Au and PLA NPs were evidently characterized by a higher delivery efficiency in case of CT26 tumors compared to CaCO<sub>3</sub> and SiO<sub>2</sub> NPs. The Au NPs demonstrated the highest accumulation in B16-F10 cells compared to other NPs. These results were verified using SPECT, <em>ex vivo</em> fluorescence bioimaging, direct radiometry and histological analysis. Thus, this work contributes to new knowledge in passive tumor targeting of NPs and can be used for the development of new strategies for delivery of bioactive compounds.</p></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"59 ","pages":"Article 102753"},"PeriodicalIF":4.2000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of passive targeted delivery of inorganic and organic nanocarriers among different types of tumors\",\"authors\":\"Alisa S. Postovalova M.Sc , Yulia A. Tishchenko B.Sc , Maria S. Istomina M.Sc , Timofey E. Karpov M.Sc , Sergei A. Shipilovskikh Ph.D , Daria Akhmetova M.Sc , Anna Rogova M.Sc , Nina V. Gavrilova M.Sc , Alexander S. Timin Ph.D\",\"doi\":\"10.1016/j.nano.2024.102753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we have considered four types of nanoparticles (NPs): polylactic acid (PLA), gold (Au), calcium carbonate (CaCO<sub>3</sub>), and silica (SiO<sub>2</sub>) with similar sizes (TEM: 50–110 nm and DLS: 110–140 nm) to examine their passive accumulation in three different tumors: colon (CT26), melanoma (B16-F10), and breast (4T1) cancers. Our results demonstrate that each tumor model showed a different accumulation of NPs, in the following order: CT26 > B16-F10 > 4T1. The Au and PLA NPs were evidently characterized by a higher delivery efficiency in case of CT26 tumors compared to CaCO<sub>3</sub> and SiO<sub>2</sub> NPs. The Au NPs demonstrated the highest accumulation in B16-F10 cells compared to other NPs. These results were verified using SPECT, <em>ex vivo</em> fluorescence bioimaging, direct radiometry and histological analysis. Thus, this work contributes to new knowledge in passive tumor targeting of NPs and can be used for the development of new strategies for delivery of bioactive compounds.</p></div>\",\"PeriodicalId\":19050,\"journal\":{\"name\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"volume\":\"59 \",\"pages\":\"Article 102753\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1549963424000224\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine : nanotechnology, biology, and medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963424000224","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Comparison of passive targeted delivery of inorganic and organic nanocarriers among different types of tumors
In this study, we have considered four types of nanoparticles (NPs): polylactic acid (PLA), gold (Au), calcium carbonate (CaCO3), and silica (SiO2) with similar sizes (TEM: 50–110 nm and DLS: 110–140 nm) to examine their passive accumulation in three different tumors: colon (CT26), melanoma (B16-F10), and breast (4T1) cancers. Our results demonstrate that each tumor model showed a different accumulation of NPs, in the following order: CT26 > B16-F10 > 4T1. The Au and PLA NPs were evidently characterized by a higher delivery efficiency in case of CT26 tumors compared to CaCO3 and SiO2 NPs. The Au NPs demonstrated the highest accumulation in B16-F10 cells compared to other NPs. These results were verified using SPECT, ex vivo fluorescence bioimaging, direct radiometry and histological analysis. Thus, this work contributes to new knowledge in passive tumor targeting of NPs and can be used for the development of new strategies for delivery of bioactive compounds.
期刊介绍:
The mission of Nanomedicine: Nanotechnology, Biology, and Medicine (Nanomedicine: NBM) is to promote the emerging interdisciplinary field of nanomedicine.
Nanomedicine: NBM is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.