Lijia Yu, Yuanfeng Zhang, Duo Wang, Lin Li, Rui Zhang, Jinming Li
{"title":"统一肿瘤突变负荷分析:在临床全外显子测序(WES)中使用硅学参考数据集的多中心研究的启示。","authors":"Lijia Yu, Yuanfeng Zhang, Duo Wang, Lin Li, Rui Zhang, Jinming Li","doi":"10.1093/ajcp/aqae056","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Tumor mutational burden (TMB) is a significant biomarker for predicting immune checkpoint inhibitor response, but the clinical performance of whole-exome sequencing (WES)-based TMB estimation has received less attention compared to panel-based methods. This study aimed to assess the reliability and comparability of WES-based TMB analysis among laboratories under routine testing conditions.</p><p><strong>Methods: </strong>A multicenter study was conducted involving 24 laboratories in China using in silico reference data sets. The accuracy and comparability of TMB estimation were evaluated using matched tumor-normal data sets. Factors such as accuracy of variant calls, limit of detection (LOD) of WES test, size of regions of interest (ROIs) used for TMB calculation, and TMB cutoff points were analyzed.</p><p><strong>Results: </strong>The laboratories consistently underestimated the expected TMB scores in matched tumor-normal samples, with only 50% falling within the ±30% TMB interval. Samples with low TMB score (<2.5) received the consensus interpretation. Accuracy of variant calls, LOD of the WES test, ROI, and TMB cutoff points were important factors causing interlaboratory deviations.</p><p><strong>Conclusions: </strong>This study highlights real-world challenges in WES-based TMB analysis that need to be improved and optimized. This research will aid in the selection of more reasonable analytical procedures to minimize potential methodologic biases in estimating TMB in clinical exome sequencing tests. Harmonizing TMB estimation in clinical testing conditions is crucial for accurately evaluating patients' response to immunotherapy.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harmonizing tumor mutational burden analysis: Insights from a multicenter study using in silico reference data sets in clinical whole-exome sequencing (WES).\",\"authors\":\"Lijia Yu, Yuanfeng Zhang, Duo Wang, Lin Li, Rui Zhang, Jinming Li\",\"doi\":\"10.1093/ajcp/aqae056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Tumor mutational burden (TMB) is a significant biomarker for predicting immune checkpoint inhibitor response, but the clinical performance of whole-exome sequencing (WES)-based TMB estimation has received less attention compared to panel-based methods. This study aimed to assess the reliability and comparability of WES-based TMB analysis among laboratories under routine testing conditions.</p><p><strong>Methods: </strong>A multicenter study was conducted involving 24 laboratories in China using in silico reference data sets. The accuracy and comparability of TMB estimation were evaluated using matched tumor-normal data sets. Factors such as accuracy of variant calls, limit of detection (LOD) of WES test, size of regions of interest (ROIs) used for TMB calculation, and TMB cutoff points were analyzed.</p><p><strong>Results: </strong>The laboratories consistently underestimated the expected TMB scores in matched tumor-normal samples, with only 50% falling within the ±30% TMB interval. Samples with low TMB score (<2.5) received the consensus interpretation. Accuracy of variant calls, LOD of the WES test, ROI, and TMB cutoff points were important factors causing interlaboratory deviations.</p><p><strong>Conclusions: </strong>This study highlights real-world challenges in WES-based TMB analysis that need to be improved and optimized. This research will aid in the selection of more reasonable analytical procedures to minimize potential methodologic biases in estimating TMB in clinical exome sequencing tests. Harmonizing TMB estimation in clinical testing conditions is crucial for accurately evaluating patients' response to immunotherapy.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/ajcp/aqae056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ajcp/aqae056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Harmonizing tumor mutational burden analysis: Insights from a multicenter study using in silico reference data sets in clinical whole-exome sequencing (WES).
Objectives: Tumor mutational burden (TMB) is a significant biomarker for predicting immune checkpoint inhibitor response, but the clinical performance of whole-exome sequencing (WES)-based TMB estimation has received less attention compared to panel-based methods. This study aimed to assess the reliability and comparability of WES-based TMB analysis among laboratories under routine testing conditions.
Methods: A multicenter study was conducted involving 24 laboratories in China using in silico reference data sets. The accuracy and comparability of TMB estimation were evaluated using matched tumor-normal data sets. Factors such as accuracy of variant calls, limit of detection (LOD) of WES test, size of regions of interest (ROIs) used for TMB calculation, and TMB cutoff points were analyzed.
Results: The laboratories consistently underestimated the expected TMB scores in matched tumor-normal samples, with only 50% falling within the ±30% TMB interval. Samples with low TMB score (<2.5) received the consensus interpretation. Accuracy of variant calls, LOD of the WES test, ROI, and TMB cutoff points were important factors causing interlaboratory deviations.
Conclusions: This study highlights real-world challenges in WES-based TMB analysis that need to be improved and optimized. This research will aid in the selection of more reasonable analytical procedures to minimize potential methodologic biases in estimating TMB in clinical exome sequencing tests. Harmonizing TMB estimation in clinical testing conditions is crucial for accurately evaluating patients' response to immunotherapy.