{"title":"吡虫啉对黄鹂的影响:在接触毒性和胃毒性处理下,通过年龄阶段双性生命表分析评估生长、发育和繁殖情况","authors":"Bo Zhang, Yi-Ru Li, Jin-Long Zhang, Guo-Hua Chen, Nian Yang, Ji-Huan Liu, Guo-Ting Yuan, Xiao-Ming Zhang","doi":"10.1007/s10340-024-01790-1","DOIUrl":null,"url":null,"abstract":"<p>Although the use of chemical insecticides to control <i>Frankliniella occidentalis</i> is widespread, it may also affect its dominant predators such as <i>Orius similis</i>. To understand the consequences of imidacloprid on the growth, development, and reproduction of <i>O. similis</i>, we investigated its toxicity and selected the concentrations of LC<sub>10</sub> and LC<sub>20</sub> for both contact and stomach toxicity tests. Using the age-stage two-sex life table theory, we evaluated the impact of imidacloprid on the life table of the <i>O. similis</i> population. The results showed that the LC<sub>10</sub> and LC<sub>20</sub> values for each developmental stage of <i>O. similis</i> were lower under contact treatment than those under stomach toxicity treatment. After treatment with imidacloprid, the average oviposition by <i>O. similis</i> decreased compared to the control, and the net reproductive rate, gross reproduction rate, intrinsic rate of increase, and finite rate of increase were also lower than the control. The results also indicated that the peak value of age-stage-specific fecundity of <i>O. similis</i> was delayed by 1–2 days after imidacloprid treatment. Predictions for population growth of <i>O. similis</i> under unrestricted conditions showed that at 60 days, the population size of the control treatment was 2.06 times and 3.20 times that of LC<sub>10</sub> contact and stomach toxicity treatment, respectively. For LC<sub>20</sub> concentration, the control treatment's population size was 2.75 times and 3.87 times, respectively. Exposure to imidacloprid at different concentrations and treatment with contact and stomach toxicity had adverse effects on the growth and population growth of <i>O. similis</i>. Under imidacloprid stomach toxicity treatment, <i>O. similis</i> showed longer growth time and a slower population growth rate, indicating strong adaptability to the contact environment.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"33 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of imidacloprid on Orius similis: assessing growth, development, and reproduction through age-stage two-sex life table analysis under contact and stomach toxicity treatments\",\"authors\":\"Bo Zhang, Yi-Ru Li, Jin-Long Zhang, Guo-Hua Chen, Nian Yang, Ji-Huan Liu, Guo-Ting Yuan, Xiao-Ming Zhang\",\"doi\":\"10.1007/s10340-024-01790-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Although the use of chemical insecticides to control <i>Frankliniella occidentalis</i> is widespread, it may also affect its dominant predators such as <i>Orius similis</i>. To understand the consequences of imidacloprid on the growth, development, and reproduction of <i>O. similis</i>, we investigated its toxicity and selected the concentrations of LC<sub>10</sub> and LC<sub>20</sub> for both contact and stomach toxicity tests. Using the age-stage two-sex life table theory, we evaluated the impact of imidacloprid on the life table of the <i>O. similis</i> population. The results showed that the LC<sub>10</sub> and LC<sub>20</sub> values for each developmental stage of <i>O. similis</i> were lower under contact treatment than those under stomach toxicity treatment. After treatment with imidacloprid, the average oviposition by <i>O. similis</i> decreased compared to the control, and the net reproductive rate, gross reproduction rate, intrinsic rate of increase, and finite rate of increase were also lower than the control. The results also indicated that the peak value of age-stage-specific fecundity of <i>O. similis</i> was delayed by 1–2 days after imidacloprid treatment. Predictions for population growth of <i>O. similis</i> under unrestricted conditions showed that at 60 days, the population size of the control treatment was 2.06 times and 3.20 times that of LC<sub>10</sub> contact and stomach toxicity treatment, respectively. For LC<sub>20</sub> concentration, the control treatment's population size was 2.75 times and 3.87 times, respectively. Exposure to imidacloprid at different concentrations and treatment with contact and stomach toxicity had adverse effects on the growth and population growth of <i>O. similis</i>. Under imidacloprid stomach toxicity treatment, <i>O. similis</i> showed longer growth time and a slower population growth rate, indicating strong adaptability to the contact environment.</p>\",\"PeriodicalId\":16736,\"journal\":{\"name\":\"Journal of Pest Science\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pest Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10340-024-01790-1\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01790-1","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Effects of imidacloprid on Orius similis: assessing growth, development, and reproduction through age-stage two-sex life table analysis under contact and stomach toxicity treatments
Although the use of chemical insecticides to control Frankliniella occidentalis is widespread, it may also affect its dominant predators such as Orius similis. To understand the consequences of imidacloprid on the growth, development, and reproduction of O. similis, we investigated its toxicity and selected the concentrations of LC10 and LC20 for both contact and stomach toxicity tests. Using the age-stage two-sex life table theory, we evaluated the impact of imidacloprid on the life table of the O. similis population. The results showed that the LC10 and LC20 values for each developmental stage of O. similis were lower under contact treatment than those under stomach toxicity treatment. After treatment with imidacloprid, the average oviposition by O. similis decreased compared to the control, and the net reproductive rate, gross reproduction rate, intrinsic rate of increase, and finite rate of increase were also lower than the control. The results also indicated that the peak value of age-stage-specific fecundity of O. similis was delayed by 1–2 days after imidacloprid treatment. Predictions for population growth of O. similis under unrestricted conditions showed that at 60 days, the population size of the control treatment was 2.06 times and 3.20 times that of LC10 contact and stomach toxicity treatment, respectively. For LC20 concentration, the control treatment's population size was 2.75 times and 3.87 times, respectively. Exposure to imidacloprid at different concentrations and treatment with contact and stomach toxicity had adverse effects on the growth and population growth of O. similis. Under imidacloprid stomach toxicity treatment, O. similis showed longer growth time and a slower population growth rate, indicating strong adaptability to the contact environment.
期刊介绍:
Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues.
Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates.
Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management.
Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.