Michel van der Eijk, Urjan Jacobs, Christiaan Tempelman
{"title":"在化学实验课上通过形成性行动和反馈提高自学能力和质量--一种有用的模式","authors":"Michel van der Eijk, Urjan Jacobs, Christiaan Tempelman","doi":"10.1016/j.ece.2024.05.001","DOIUrl":null,"url":null,"abstract":"<div><p>In here a novel method is described to improve student success rates in a first-year basic chemistry theoretical/practical hybrid course (n = 31 students) by implementing simple ways of formative assessment. This to reduce student dropout rates following the philosophy of encouraging students’ self-control. Essential is to train first-year bachelor students in their self-learning skills and to enhance their evaluative judgment. As a result, students are able to provide better quality of the assessment products at the end of the course. In practice the course is redesigned and intervention tools are integrated at multiple levels throughout the course. The lecturers’ role was adapted to a coaching role, thereby introducing low-effort personalized micro-interventions to meet the personalized needs of students. To clarify these learning needs for students, awareness of the quality desired for the final assessment products is important. Awareness was improved by providing examples of varying quality and introducing multiple peer- and self-assessment moments during the course. The final evaluation of the course examination products showed that the quality of the laboratory notebook was substantially higher after following this approach. Additionally students learned other important skills such as self-learning skills, collaborating in practical work and giving and receiving feedback. Unexpectedly, the high perceived lecturers’ workload decreased. The work presented here provides a novel approach in the form of a model and a practical blueprint with tools for a practical chemistry course design which develops students’ self-learning skills thereby substantially improving student success rates. In our example course, the ultimate student success rate increased form 83 % to 95 % after using this novel approach.</p></div>","PeriodicalId":48509,"journal":{"name":"Education for Chemical Engineers","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1749772824000095/pdfft?md5=53cf4112b1e6592776983b58e53f2951&pid=1-s2.0-S1749772824000095-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing self-learning skills and quality through formative actions and feedback within chemistry classes in the laboratory – A useful model\",\"authors\":\"Michel van der Eijk, Urjan Jacobs, Christiaan Tempelman\",\"doi\":\"10.1016/j.ece.2024.05.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In here a novel method is described to improve student success rates in a first-year basic chemistry theoretical/practical hybrid course (n = 31 students) by implementing simple ways of formative assessment. This to reduce student dropout rates following the philosophy of encouraging students’ self-control. Essential is to train first-year bachelor students in their self-learning skills and to enhance their evaluative judgment. As a result, students are able to provide better quality of the assessment products at the end of the course. In practice the course is redesigned and intervention tools are integrated at multiple levels throughout the course. The lecturers’ role was adapted to a coaching role, thereby introducing low-effort personalized micro-interventions to meet the personalized needs of students. To clarify these learning needs for students, awareness of the quality desired for the final assessment products is important. Awareness was improved by providing examples of varying quality and introducing multiple peer- and self-assessment moments during the course. The final evaluation of the course examination products showed that the quality of the laboratory notebook was substantially higher after following this approach. Additionally students learned other important skills such as self-learning skills, collaborating in practical work and giving and receiving feedback. Unexpectedly, the high perceived lecturers’ workload decreased. The work presented here provides a novel approach in the form of a model and a practical blueprint with tools for a practical chemistry course design which develops students’ self-learning skills thereby substantially improving student success rates. In our example course, the ultimate student success rate increased form 83 % to 95 % after using this novel approach.</p></div>\",\"PeriodicalId\":48509,\"journal\":{\"name\":\"Education for Chemical Engineers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1749772824000095/pdfft?md5=53cf4112b1e6592776983b58e53f2951&pid=1-s2.0-S1749772824000095-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Education for Chemical Engineers\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1749772824000095\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Education for Chemical Engineers","FirstCategoryId":"95","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1749772824000095","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
Enhancing self-learning skills and quality through formative actions and feedback within chemistry classes in the laboratory – A useful model
In here a novel method is described to improve student success rates in a first-year basic chemistry theoretical/practical hybrid course (n = 31 students) by implementing simple ways of formative assessment. This to reduce student dropout rates following the philosophy of encouraging students’ self-control. Essential is to train first-year bachelor students in their self-learning skills and to enhance their evaluative judgment. As a result, students are able to provide better quality of the assessment products at the end of the course. In practice the course is redesigned and intervention tools are integrated at multiple levels throughout the course. The lecturers’ role was adapted to a coaching role, thereby introducing low-effort personalized micro-interventions to meet the personalized needs of students. To clarify these learning needs for students, awareness of the quality desired for the final assessment products is important. Awareness was improved by providing examples of varying quality and introducing multiple peer- and self-assessment moments during the course. The final evaluation of the course examination products showed that the quality of the laboratory notebook was substantially higher after following this approach. Additionally students learned other important skills such as self-learning skills, collaborating in practical work and giving and receiving feedback. Unexpectedly, the high perceived lecturers’ workload decreased. The work presented here provides a novel approach in the form of a model and a practical blueprint with tools for a practical chemistry course design which develops students’ self-learning skills thereby substantially improving student success rates. In our example course, the ultimate student success rate increased form 83 % to 95 % after using this novel approach.
期刊介绍:
Education for Chemical Engineers was launched in 2006 with a remit to publisheducation research papers, resource reviews and teaching and learning notes. ECE is targeted at chemical engineering academics and educators, discussing the ongoingchanges and development in chemical engineering education. This international title publishes papers from around the world, creating a global network of chemical engineering academics. Papers demonstrating how educational research results can be applied to chemical engineering education are particularly welcome, as are the accounts of research work that brings new perspectives to established principles, highlighting unsolved problems or indicating direction for future research relevant to chemical engineering education. Core topic areas: -Assessment- Accreditation- Curriculum development and transformation- Design- Diversity- Distance education-- E-learning Entrepreneurship programs- Industry-academic linkages- Benchmarking- Lifelong learning- Multidisciplinary programs- Outreach from kindergarten to high school programs- Student recruitment and retention and transition programs- New technology- Problem-based learning- Social responsibility and professionalism- Teamwork- Web-based learning