Enas A. Othman , Aloijsius G.J. van der Ham , Henk Miedema , Sascha R.A. Kersten
{"title":"基于离子液体的金属萃取工艺的热力学和物理特性","authors":"Enas A. Othman , Aloijsius G.J. van der Ham , Henk Miedema , Sascha R.A. Kersten","doi":"10.1016/j.jil.2024.100097","DOIUrl":null,"url":null,"abstract":"<div><p>In this study a LLX process for the extraction of cobalt by the IL [P<sub>8888</sub>][Oleate] is analysed in terms of relevant thermodynamic parameters. The process can be considered a typical example of transition metal extraction by an ionic liquid. Conductivity and chemical (FTIR) analyses indicate that Co<sup>2+</sup> complexes with the IL. Three different models are evaluated, all different with respect to the actual Co<sup>2+</sup> species that complexes with the IL, as well as the Co<sup>2+</sup>:IL stoichiometry. Based on simulations we identified CoCl<sub>2</sub> as the Co species that enters and complexes with the IL, in a Co<sup>2+</sup>:IL ratio of 1:2. The complexation reaction between the Co-species and the IL is an endothermic, entropy-driven reaction. The influence of the feed composition on Co<sup>2+</sup> extraction is investigated, including the effect of the nature of the accompanying anion as well as the presence of a salting out cation agent. The higher Co<sup>2+</sup> extraction from a NO<sub>3</sub><sup>−</sup> medium is due to the stronger interaction between Co(NO<sub>3</sub>)<sub>2</sub> and the IL, reflected by a higher equilibrium constant of Co(NO<sub>3</sub>)<sub>2</sub> compared to CoCl<sub>2</sub>. Differences in dehydration enthalpy between the ion species involved may contribute as well. Similar effects play a role when comparing uptake rates in solutions containing both Co<sup>2+</sup> and Na<sup>+</sup>, with Co<sup>2+</sup> extraction clearly preferred over that of Na<sup>+</sup>. Observed differences in Co<sup>2+</sup> uptake in the presence of a salting-out agent (NaCl, KCl and NH<sub>4</sub>Cl) can be explained in terms of the hydration energy of the salting out cation, the higher this hydration energy, the higher the Co<sup>2+</sup> uptake by the IL.</p></div>","PeriodicalId":100794,"journal":{"name":"Journal of Ionic Liquids","volume":"4 1","pages":"Article 100097"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277242202400020X/pdfft?md5=2aac78af15813cd096703390c882fea3&pid=1-s2.0-S277242202400020X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Thermodynamics and physical properties of an ionic liquid-based metal extraction process\",\"authors\":\"Enas A. Othman , Aloijsius G.J. van der Ham , Henk Miedema , Sascha R.A. Kersten\",\"doi\":\"10.1016/j.jil.2024.100097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study a LLX process for the extraction of cobalt by the IL [P<sub>8888</sub>][Oleate] is analysed in terms of relevant thermodynamic parameters. The process can be considered a typical example of transition metal extraction by an ionic liquid. Conductivity and chemical (FTIR) analyses indicate that Co<sup>2+</sup> complexes with the IL. Three different models are evaluated, all different with respect to the actual Co<sup>2+</sup> species that complexes with the IL, as well as the Co<sup>2+</sup>:IL stoichiometry. Based on simulations we identified CoCl<sub>2</sub> as the Co species that enters and complexes with the IL, in a Co<sup>2+</sup>:IL ratio of 1:2. The complexation reaction between the Co-species and the IL is an endothermic, entropy-driven reaction. The influence of the feed composition on Co<sup>2+</sup> extraction is investigated, including the effect of the nature of the accompanying anion as well as the presence of a salting out cation agent. The higher Co<sup>2+</sup> extraction from a NO<sub>3</sub><sup>−</sup> medium is due to the stronger interaction between Co(NO<sub>3</sub>)<sub>2</sub> and the IL, reflected by a higher equilibrium constant of Co(NO<sub>3</sub>)<sub>2</sub> compared to CoCl<sub>2</sub>. Differences in dehydration enthalpy between the ion species involved may contribute as well. Similar effects play a role when comparing uptake rates in solutions containing both Co<sup>2+</sup> and Na<sup>+</sup>, with Co<sup>2+</sup> extraction clearly preferred over that of Na<sup>+</sup>. Observed differences in Co<sup>2+</sup> uptake in the presence of a salting-out agent (NaCl, KCl and NH<sub>4</sub>Cl) can be explained in terms of the hydration energy of the salting out cation, the higher this hydration energy, the higher the Co<sup>2+</sup> uptake by the IL.</p></div>\",\"PeriodicalId\":100794,\"journal\":{\"name\":\"Journal of Ionic Liquids\",\"volume\":\"4 1\",\"pages\":\"Article 100097\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S277242202400020X/pdfft?md5=2aac78af15813cd096703390c882fea3&pid=1-s2.0-S277242202400020X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ionic Liquids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277242202400020X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ionic Liquids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277242202400020X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermodynamics and physical properties of an ionic liquid-based metal extraction process
In this study a LLX process for the extraction of cobalt by the IL [P8888][Oleate] is analysed in terms of relevant thermodynamic parameters. The process can be considered a typical example of transition metal extraction by an ionic liquid. Conductivity and chemical (FTIR) analyses indicate that Co2+ complexes with the IL. Three different models are evaluated, all different with respect to the actual Co2+ species that complexes with the IL, as well as the Co2+:IL stoichiometry. Based on simulations we identified CoCl2 as the Co species that enters and complexes with the IL, in a Co2+:IL ratio of 1:2. The complexation reaction between the Co-species and the IL is an endothermic, entropy-driven reaction. The influence of the feed composition on Co2+ extraction is investigated, including the effect of the nature of the accompanying anion as well as the presence of a salting out cation agent. The higher Co2+ extraction from a NO3− medium is due to the stronger interaction between Co(NO3)2 and the IL, reflected by a higher equilibrium constant of Co(NO3)2 compared to CoCl2. Differences in dehydration enthalpy between the ion species involved may contribute as well. Similar effects play a role when comparing uptake rates in solutions containing both Co2+ and Na+, with Co2+ extraction clearly preferred over that of Na+. Observed differences in Co2+ uptake in the presence of a salting-out agent (NaCl, KCl and NH4Cl) can be explained in terms of the hydration energy of the salting out cation, the higher this hydration energy, the higher the Co2+ uptake by the IL.