用于无线脑机接口的无监督尖峰排序高能效信道交织神经信号处理器。

Zichen Hu, Zhining Zhou, Hongming Lyu
{"title":"用于无线脑机接口的无监督尖峰排序高能效信道交织神经信号处理器。","authors":"Zichen Hu, Zhining Zhou, Hongming Lyu","doi":"10.1109/TBCAS.2024.3395353","DOIUrl":null,"url":null,"abstract":"<p><p>Next generation of wireless brain-computer-interface (BCI) devices require dedicated neural signal processors (NSPs) to extract key neurological information while operating within given power consumption and transmission bandwidth limits. Spike detection and clustering are important signal processing steps in neurological research and clinical applications. Computational-friendly spike detection and feature extraction algorithms are first systematically evaluated in this work. The nonlinear energy operator (NEO) and the first-and-second-derivative (FSDE) together with the 'perturbed' K-mean clustering achieve the highest accuracy performance. An NSP ASIC is implemented in a channel-interleaved architecture and the folding ratio of 16 leads to the minimum power-and-area product. As the result, the NSP consumes 2-μW power consumption and occupies 0.0057 mm2 for each channel in a 65-nm CMOS technology. The proposed system achieves the unsupervised spike classification accuracy of 92% and a data-rate reduction of 98.3%, showing the promise for realizing high-channel-count wireless BCIs.</p>","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Power-and-Area-Efficient Channel-Interleaved Neural Signal Processor for Wireless Brain-Computer Interfaces with Unsupervised Spike Sorting.\",\"authors\":\"Zichen Hu, Zhining Zhou, Hongming Lyu\",\"doi\":\"10.1109/TBCAS.2024.3395353\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Next generation of wireless brain-computer-interface (BCI) devices require dedicated neural signal processors (NSPs) to extract key neurological information while operating within given power consumption and transmission bandwidth limits. Spike detection and clustering are important signal processing steps in neurological research and clinical applications. Computational-friendly spike detection and feature extraction algorithms are first systematically evaluated in this work. The nonlinear energy operator (NEO) and the first-and-second-derivative (FSDE) together with the 'perturbed' K-mean clustering achieve the highest accuracy performance. An NSP ASIC is implemented in a channel-interleaved architecture and the folding ratio of 16 leads to the minimum power-and-area product. As the result, the NSP consumes 2-μW power consumption and occupies 0.0057 mm2 for each channel in a 65-nm CMOS technology. The proposed system achieves the unsupervised spike classification accuracy of 92% and a data-rate reduction of 98.3%, showing the promise for realizing high-channel-count wireless BCIs.</p>\",\"PeriodicalId\":94031,\"journal\":{\"name\":\"IEEE transactions on biomedical circuits and systems\",\"volume\":\"PP \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biomedical circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TBCAS.2024.3395353\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TBCAS.2024.3395353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

下一代无线脑机接口(BCI)设备需要专用的神经信号处理器(NSP)来提取关键的神经信息,同时在给定的功耗和传输带宽限制内运行。尖峰检测和聚类是神经学研究和临床应用中重要的信号处理步骤。本研究首次系统地评估了便于计算的尖峰检测和特征提取算法。非线性能量算子(NEO)和一二次导数(FSDE)以及 "扰动 "K均值聚类实现了最高的准确性。NSP ASIC 采用通道交错架构,折叠率为 16,从而实现了最小的功率和面积乘积。因此,在 65 纳米 CMOS 技术中,NSP 的功耗为 2μW,每个通道的占地面积为 0.0057 平方毫米。所提出的系统实现了 92% 的无监督尖峰分类准确率和 98.3% 的数据速率降低率,显示了实现高信道数无线 BCI 的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Power-and-Area-Efficient Channel-Interleaved Neural Signal Processor for Wireless Brain-Computer Interfaces with Unsupervised Spike Sorting.

Next generation of wireless brain-computer-interface (BCI) devices require dedicated neural signal processors (NSPs) to extract key neurological information while operating within given power consumption and transmission bandwidth limits. Spike detection and clustering are important signal processing steps in neurological research and clinical applications. Computational-friendly spike detection and feature extraction algorithms are first systematically evaluated in this work. The nonlinear energy operator (NEO) and the first-and-second-derivative (FSDE) together with the 'perturbed' K-mean clustering achieve the highest accuracy performance. An NSP ASIC is implemented in a channel-interleaved architecture and the folding ratio of 16 leads to the minimum power-and-area product. As the result, the NSP consumes 2-μW power consumption and occupies 0.0057 mm2 for each channel in a 65-nm CMOS technology. The proposed system achieves the unsupervised spike classification accuracy of 92% and a data-rate reduction of 98.3%, showing the promise for realizing high-channel-count wireless BCIs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信