{"title":"用于中国两栖动物综合评估的 eDNA 代谢编码引物的验证与开发。","authors":"Dongyi Wu, Pingshin Lee, Hongman Chen, Fang Yan, Jiayue Huang, Yanhong He, Ruiyao Wu, Zhiyong Yuan","doi":"10.1111/1749-4877.12832","DOIUrl":null,"url":null,"abstract":"<p><p>Environmental DNA (eDNA) metabarcoding has emerged as a powerful, non-invasive tool for biodiversity assessments. However, the accuracy and limitations of these assessment techniques are highly dependent on the choice of primer pairs being used. Although several primer sets have been used in eDNA metabarcoding studies of amphibians, there are few comparisons of their reliability and efficiency. Here, we employed lab- and field-tested sets of publicly available and de novo-designed primers in amplifying 83 species of amphibian from all three orders (Anura, Caudata, and Gymnophiona) and 13 families present in China to evaluate the versatility and specificity of these primers sets in amphibian eDNA metabarcoding studies. Three pairs of primers were highly effective, as they could successfully amplify all the major clades of Chinese amphibians in our study. A few non-amphibian taxa were also amplified by these primers, which implies that further optimization of amphibian-specific primers is still needed. The simultaneous use of three primer sets can completely cover all the species obtained by conventional survey methods and has even effectively distinguished quite a number of species (n = 20) in the Wenshan National Nature Reserve. No single primer set could individually detect all of the species from the studied region, indicating that multiple primers might be necessary for a comprehensive survey of Chinese amphibians. Besides, seasonal variations in amphibian species composition were also revealed by eDNA metabarcoding, which was consistent with traditional survey methods. These results indicate that eDNA metabarcoding has the potential to be a powerful tool for studying spatial and temporal community changes in amphibian species richness.</p>","PeriodicalId":13654,"journal":{"name":"Integrative zoology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation and development of eDNA metabarcoding primers for comprehensive assessment of Chinese amphibians.\",\"authors\":\"Dongyi Wu, Pingshin Lee, Hongman Chen, Fang Yan, Jiayue Huang, Yanhong He, Ruiyao Wu, Zhiyong Yuan\",\"doi\":\"10.1111/1749-4877.12832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Environmental DNA (eDNA) metabarcoding has emerged as a powerful, non-invasive tool for biodiversity assessments. However, the accuracy and limitations of these assessment techniques are highly dependent on the choice of primer pairs being used. Although several primer sets have been used in eDNA metabarcoding studies of amphibians, there are few comparisons of their reliability and efficiency. Here, we employed lab- and field-tested sets of publicly available and de novo-designed primers in amplifying 83 species of amphibian from all three orders (Anura, Caudata, and Gymnophiona) and 13 families present in China to evaluate the versatility and specificity of these primers sets in amphibian eDNA metabarcoding studies. Three pairs of primers were highly effective, as they could successfully amplify all the major clades of Chinese amphibians in our study. A few non-amphibian taxa were also amplified by these primers, which implies that further optimization of amphibian-specific primers is still needed. The simultaneous use of three primer sets can completely cover all the species obtained by conventional survey methods and has even effectively distinguished quite a number of species (n = 20) in the Wenshan National Nature Reserve. No single primer set could individually detect all of the species from the studied region, indicating that multiple primers might be necessary for a comprehensive survey of Chinese amphibians. Besides, seasonal variations in amphibian species composition were also revealed by eDNA metabarcoding, which was consistent with traditional survey methods. These results indicate that eDNA metabarcoding has the potential to be a powerful tool for studying spatial and temporal community changes in amphibian species richness.</p>\",\"PeriodicalId\":13654,\"journal\":{\"name\":\"Integrative zoology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/1749-4877.12832\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1749-4877.12832","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
Validation and development of eDNA metabarcoding primers for comprehensive assessment of Chinese amphibians.
Environmental DNA (eDNA) metabarcoding has emerged as a powerful, non-invasive tool for biodiversity assessments. However, the accuracy and limitations of these assessment techniques are highly dependent on the choice of primer pairs being used. Although several primer sets have been used in eDNA metabarcoding studies of amphibians, there are few comparisons of their reliability and efficiency. Here, we employed lab- and field-tested sets of publicly available and de novo-designed primers in amplifying 83 species of amphibian from all three orders (Anura, Caudata, and Gymnophiona) and 13 families present in China to evaluate the versatility and specificity of these primers sets in amphibian eDNA metabarcoding studies. Three pairs of primers were highly effective, as they could successfully amplify all the major clades of Chinese amphibians in our study. A few non-amphibian taxa were also amplified by these primers, which implies that further optimization of amphibian-specific primers is still needed. The simultaneous use of three primer sets can completely cover all the species obtained by conventional survey methods and has even effectively distinguished quite a number of species (n = 20) in the Wenshan National Nature Reserve. No single primer set could individually detect all of the species from the studied region, indicating that multiple primers might be necessary for a comprehensive survey of Chinese amphibians. Besides, seasonal variations in amphibian species composition were also revealed by eDNA metabarcoding, which was consistent with traditional survey methods. These results indicate that eDNA metabarcoding has the potential to be a powerful tool for studying spatial and temporal community changes in amphibian species richness.
期刊介绍:
The official journal of the International Society of Zoological Sciences focuses on zoology as an integrative discipline encompassing all aspects of animal life. It presents a broader perspective of many levels of zoological inquiry, both spatial and temporal, and encourages cooperation between zoology and other disciplines including, but not limited to, physics, computer science, social science, ethics, teaching, paleontology, molecular biology, physiology, behavior, ecology and the built environment. It also looks at the animal-human interaction through exploring animal-plant interactions, microbe/pathogen effects and global changes on the environment and human society.
Integrative topics of greatest interest to INZ include:
(1) Animals & climate change
(2) Animals & pollution
(3) Animals & infectious diseases
(4) Animals & biological invasions
(5) Animal-plant interactions
(6) Zoogeography & paleontology
(7) Neurons, genes & behavior
(8) Molecular ecology & evolution
(9) Physiological adaptations