{"title":"Cayley-Dickson 代数上傅立叶变换的 Hausdorff-Young 不等式","authors":"Shihao Fan, Guangbin Ren","doi":"10.1007/s00006-024-01326-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we extend Beckner’s seminal work on the Fourier transform to the domain of Cayley–Dickson algebras, establishing a precise form of the Hausdorff–Young inequality for functions that take values in these algebras. Our extension faces significant hurdles due to the unique characteristics of the Cayley–Dickson Fourier transform. This transformation diverges from the classical Fourier transform in several key aspects: it does not conform to the Plancherel theorem, alters the interplay between derivatives and multiplication, and the product of algebra elements does not necessarily maintain the magnitude relationships found in classical settings. To overcome these challenges, our approach involves constructing the Cayley–Dickson Fourier transform by sequentially applying classical Fourier transforms. A pivotal part of our strategy is the utilization of a theorem that facilitates the norm-preserving extension of linear operators between spaces <span>\\(L^p\\)</span> and <span>\\(L^q.\\)</span> Furthermore, our investigation brings new insights into the complexities surrounding the Beckner–Hirschman Entropic inequality in the context of non-associative algebras.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hausdorff–Young Inequalities for Fourier Transforms over Cayley–Dickson Algebras\",\"authors\":\"Shihao Fan, Guangbin Ren\",\"doi\":\"10.1007/s00006-024-01326-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, we extend Beckner’s seminal work on the Fourier transform to the domain of Cayley–Dickson algebras, establishing a precise form of the Hausdorff–Young inequality for functions that take values in these algebras. Our extension faces significant hurdles due to the unique characteristics of the Cayley–Dickson Fourier transform. This transformation diverges from the classical Fourier transform in several key aspects: it does not conform to the Plancherel theorem, alters the interplay between derivatives and multiplication, and the product of algebra elements does not necessarily maintain the magnitude relationships found in classical settings. To overcome these challenges, our approach involves constructing the Cayley–Dickson Fourier transform by sequentially applying classical Fourier transforms. A pivotal part of our strategy is the utilization of a theorem that facilitates the norm-preserving extension of linear operators between spaces <span>\\\\(L^p\\\\)</span> and <span>\\\\(L^q.\\\\)</span> Furthermore, our investigation brings new insights into the complexities surrounding the Beckner–Hirschman Entropic inequality in the context of non-associative algebras.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00006-024-01326-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00006-024-01326-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Hausdorff–Young Inequalities for Fourier Transforms over Cayley–Dickson Algebras
In this study, we extend Beckner’s seminal work on the Fourier transform to the domain of Cayley–Dickson algebras, establishing a precise form of the Hausdorff–Young inequality for functions that take values in these algebras. Our extension faces significant hurdles due to the unique characteristics of the Cayley–Dickson Fourier transform. This transformation diverges from the classical Fourier transform in several key aspects: it does not conform to the Plancherel theorem, alters the interplay between derivatives and multiplication, and the product of algebra elements does not necessarily maintain the magnitude relationships found in classical settings. To overcome these challenges, our approach involves constructing the Cayley–Dickson Fourier transform by sequentially applying classical Fourier transforms. A pivotal part of our strategy is the utilization of a theorem that facilitates the norm-preserving extension of linear operators between spaces \(L^p\) and \(L^q.\) Furthermore, our investigation brings new insights into the complexities surrounding the Beckner–Hirschman Entropic inequality in the context of non-associative algebras.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.