Stiefel Manifold 上的非光滑优化及其他:近端梯度法及其最新变体

IF 10.8 1区 数学 Q1 MATHEMATICS, APPLIED
SIAM Review Pub Date : 2024-05-09 DOI:10.1137/24m1628578
Shixiang Chen, Shiqian Ma, Anthony Man-Cho So, Tong Zhang
{"title":"Stiefel Manifold 上的非光滑优化及其他:近端梯度法及其最新变体","authors":"Shixiang Chen, Shiqian Ma, Anthony Man-Cho So, Tong Zhang","doi":"10.1137/24m1628578","DOIUrl":null,"url":null,"abstract":"SIAM Review, Volume 66, Issue 2, Page 319-352, May 2024. <br/> We consider optimization problems over the Stiefel manifold whose objective function is the summation of a smooth function and a nonsmooth function. Existing methods for solving this class of problems converge slowly in practice, involve subproblems that can be as difficult as the original problem, or lack rigorous convergence guarantees. In this paper, we propose a manifold proximal gradient method (ManPG) for solving this class of problems. We prove that the proposed method converges globally to a stationary point and establish its iteration complexity for obtaining an $\\epsilon$-stationary point. Furthermore, we present numerical results on the sparse PCA and compressed modes problems to demonstrate the advantages of the proposed method. We also discuss some recent advances related to ManPG for Riemannian optimization with nonsmooth objective functions.","PeriodicalId":49525,"journal":{"name":"SIAM Review","volume":"105 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonsmooth Optimization over the Stiefel Manifold and Beyond: Proximal Gradient Method and Recent Variants\",\"authors\":\"Shixiang Chen, Shiqian Ma, Anthony Man-Cho So, Tong Zhang\",\"doi\":\"10.1137/24m1628578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Review, Volume 66, Issue 2, Page 319-352, May 2024. <br/> We consider optimization problems over the Stiefel manifold whose objective function is the summation of a smooth function and a nonsmooth function. Existing methods for solving this class of problems converge slowly in practice, involve subproblems that can be as difficult as the original problem, or lack rigorous convergence guarantees. In this paper, we propose a manifold proximal gradient method (ManPG) for solving this class of problems. We prove that the proposed method converges globally to a stationary point and establish its iteration complexity for obtaining an $\\\\epsilon$-stationary point. Furthermore, we present numerical results on the sparse PCA and compressed modes problems to demonstrate the advantages of the proposed method. We also discuss some recent advances related to ManPG for Riemannian optimization with nonsmooth objective functions.\",\"PeriodicalId\":49525,\"journal\":{\"name\":\"SIAM Review\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Review\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/24m1628578\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Review","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1628578","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM Review》,第 66 卷第 2 期,第 319-352 页,2024 年 5 月。 我们考虑的是目标函数为光滑函数与非光滑函数之和的 Stiefel 流形上的优化问题。解决这类问题的现有方法在实践中收敛缓慢,涉及的子问题可能与原始问题一样困难,或者缺乏严格的收敛保证。在本文中,我们提出了一种解决这类问题的流形近似梯度法(ManPG)。我们证明了所提出的方法会全局收敛到一个静止点,并确定了其获得 $\epsilon$ 静止点的迭代复杂度。此外,我们还给出了稀疏 PCA 和压缩模式问题的数值结果,以证明所提方法的优势。此外,我们还讨论了与用于非光滑目标函数的黎曼优化的 ManPG 相关的一些最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonsmooth Optimization over the Stiefel Manifold and Beyond: Proximal Gradient Method and Recent Variants
SIAM Review, Volume 66, Issue 2, Page 319-352, May 2024.
We consider optimization problems over the Stiefel manifold whose objective function is the summation of a smooth function and a nonsmooth function. Existing methods for solving this class of problems converge slowly in practice, involve subproblems that can be as difficult as the original problem, or lack rigorous convergence guarantees. In this paper, we propose a manifold proximal gradient method (ManPG) for solving this class of problems. We prove that the proposed method converges globally to a stationary point and establish its iteration complexity for obtaining an $\epsilon$-stationary point. Furthermore, we present numerical results on the sparse PCA and compressed modes problems to demonstrate the advantages of the proposed method. We also discuss some recent advances related to ManPG for Riemannian optimization with nonsmooth objective functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Review
SIAM Review 数学-应用数学
CiteScore
16.90
自引率
0.00%
发文量
50
期刊介绍: Survey and Review feature papers that provide an integrative and current viewpoint on important topics in applied or computational mathematics and scientific computing. These papers aim to offer a comprehensive perspective on the subject matter. Research Spotlights publish concise research papers in applied and computational mathematics that are of interest to a wide range of readers in SIAM Review. The papers in this section present innovative ideas that are clearly explained and motivated. They stand out from regular publications in specific SIAM journals due to their accessibility and potential for widespread and long-lasting influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信