Shixiang Chen, Shiqian Ma, Anthony Man-Cho So, Tong Zhang
{"title":"Stiefel Manifold 上的非光滑优化及其他:近端梯度法及其最新变体","authors":"Shixiang Chen, Shiqian Ma, Anthony Man-Cho So, Tong Zhang","doi":"10.1137/24m1628578","DOIUrl":null,"url":null,"abstract":"SIAM Review, Volume 66, Issue 2, Page 319-352, May 2024. <br/> We consider optimization problems over the Stiefel manifold whose objective function is the summation of a smooth function and a nonsmooth function. Existing methods for solving this class of problems converge slowly in practice, involve subproblems that can be as difficult as the original problem, or lack rigorous convergence guarantees. In this paper, we propose a manifold proximal gradient method (ManPG) for solving this class of problems. We prove that the proposed method converges globally to a stationary point and establish its iteration complexity for obtaining an $\\epsilon$-stationary point. Furthermore, we present numerical results on the sparse PCA and compressed modes problems to demonstrate the advantages of the proposed method. We also discuss some recent advances related to ManPG for Riemannian optimization with nonsmooth objective functions.","PeriodicalId":49525,"journal":{"name":"SIAM Review","volume":"105 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonsmooth Optimization over the Stiefel Manifold and Beyond: Proximal Gradient Method and Recent Variants\",\"authors\":\"Shixiang Chen, Shiqian Ma, Anthony Man-Cho So, Tong Zhang\",\"doi\":\"10.1137/24m1628578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Review, Volume 66, Issue 2, Page 319-352, May 2024. <br/> We consider optimization problems over the Stiefel manifold whose objective function is the summation of a smooth function and a nonsmooth function. Existing methods for solving this class of problems converge slowly in practice, involve subproblems that can be as difficult as the original problem, or lack rigorous convergence guarantees. In this paper, we propose a manifold proximal gradient method (ManPG) for solving this class of problems. We prove that the proposed method converges globally to a stationary point and establish its iteration complexity for obtaining an $\\\\epsilon$-stationary point. Furthermore, we present numerical results on the sparse PCA and compressed modes problems to demonstrate the advantages of the proposed method. We also discuss some recent advances related to ManPG for Riemannian optimization with nonsmooth objective functions.\",\"PeriodicalId\":49525,\"journal\":{\"name\":\"SIAM Review\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Review\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/24m1628578\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Review","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1628578","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Nonsmooth Optimization over the Stiefel Manifold and Beyond: Proximal Gradient Method and Recent Variants
SIAM Review, Volume 66, Issue 2, Page 319-352, May 2024. We consider optimization problems over the Stiefel manifold whose objective function is the summation of a smooth function and a nonsmooth function. Existing methods for solving this class of problems converge slowly in practice, involve subproblems that can be as difficult as the original problem, or lack rigorous convergence guarantees. In this paper, we propose a manifold proximal gradient method (ManPG) for solving this class of problems. We prove that the proposed method converges globally to a stationary point and establish its iteration complexity for obtaining an $\epsilon$-stationary point. Furthermore, we present numerical results on the sparse PCA and compressed modes problems to demonstrate the advantages of the proposed method. We also discuss some recent advances related to ManPG for Riemannian optimization with nonsmooth objective functions.
期刊介绍:
Survey and Review feature papers that provide an integrative and current viewpoint on important topics in applied or computational mathematics and scientific computing. These papers aim to offer a comprehensive perspective on the subject matter.
Research Spotlights publish concise research papers in applied and computational mathematics that are of interest to a wide range of readers in SIAM Review. The papers in this section present innovative ideas that are clearly explained and motivated. They stand out from regular publications in specific SIAM journals due to their accessibility and potential for widespread and long-lasting influence.