全球去趋势显著提高了基于 XGBoost 的美国中西部县级玉米和大豆产量预测的准确性

IF 6 2区 地球科学 Q1 GEOGRAPHY, PHYSICAL
Yuanchao Li, Hongwei Zeng, Miao Zhang, Bingfang Wu, Xingli Qin
{"title":"全球去趋势显著提高了基于 XGBoost 的美国中西部县级玉米和大豆产量预测的准确性","authors":"Yuanchao Li, Hongwei Zeng, Miao Zhang, Bingfang Wu, Xingli Qin","doi":"10.1080/15481603.2024.2349341","DOIUrl":null,"url":null,"abstract":"The application of machine learning in crop yield prediction has gained considerable traction, yet uncertainties persist regarding the impact of the yield trends on these predictions and the differ...","PeriodicalId":55091,"journal":{"name":"GIScience & Remote Sensing","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global de-trending significantly improves the accuracy of XGBoost-based county-level maize and soybean yield prediction in the Midwestern United States\",\"authors\":\"Yuanchao Li, Hongwei Zeng, Miao Zhang, Bingfang Wu, Xingli Qin\",\"doi\":\"10.1080/15481603.2024.2349341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of machine learning in crop yield prediction has gained considerable traction, yet uncertainties persist regarding the impact of the yield trends on these predictions and the differ...\",\"PeriodicalId\":55091,\"journal\":{\"name\":\"GIScience & Remote Sensing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GIScience & Remote Sensing\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/15481603.2024.2349341\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GIScience & Remote Sensing","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/15481603.2024.2349341","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

机器学习在农作物产量预测中的应用已取得了相当大的进展,但产量趋势对这些预测的影响以及农作物产量预测的差异仍存在不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global de-trending significantly improves the accuracy of XGBoost-based county-level maize and soybean yield prediction in the Midwestern United States
The application of machine learning in crop yield prediction has gained considerable traction, yet uncertainties persist regarding the impact of the yield trends on these predictions and the differ...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.20
自引率
9.00%
发文量
84
审稿时长
6 months
期刊介绍: GIScience & Remote Sensing publishes original, peer-reviewed articles associated with geographic information systems (GIS), remote sensing of the environment (including digital image processing), geocomputation, spatial data mining, and geographic environmental modelling. Papers reflecting both basic and applied research are published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信