R. C. Rohit, Subrata Chandra Roy, Robiul Alam and Saiful M. Islam
{"title":"金属硫化物/多硫化物功能化层状双氢氧化物--从水溶液中去除重金属离子和氧阴离子的最新进展","authors":"R. C. Rohit, Subrata Chandra Roy, Robiul Alam and Saiful M. Islam","doi":"10.1039/D4DT00883A","DOIUrl":null,"url":null,"abstract":"<p >Water constitutes an indispensable resource for global life but remains susceptible to pollution from diverse human activities. To mitigate this issue, researchers are committed to purifying water using a variety of materials to remove harmful chemicals, such as heavy metals. Layered double hydroxides (LDHs), with their intriguing, layered structure and chemical behavior, have attained substantial attention for their effectiveness in removing heavy metal cations and various inorganic oxoanions from water. To enhance the efficiency, considerable endeavors have focused on functionalizing LDHs with different chemical species. Intercalation with metal sulfides has proven to be particularly effective, facilitating heavy metal absorption through multiple mechanisms, including ion-exchange, reductive precipitation, and surface sorption. This review concentrates on the synthesis and performance of polysulfide (S<small><sub><em>x</em></sub></small>, <em>x</em> = 2–5), Mo–S, and Sn–S anion intercalated LDHs for heavy metal cations and inorganic oxoanion sorption, along with their mechanisms. Furthermore, the discussion includes prospects for expanding the chemistry of metal sulfide intercalated LDHs, with existing challenges and future outlooks.</p>","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":" 24","pages":" 10037-10049"},"PeriodicalIF":3.3000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal-sulfide/polysulfide functionalized layered double hydroxides – recent progress in the removal of heavy metal ions and oxoanionic species from aqueous solutions\",\"authors\":\"R. C. Rohit, Subrata Chandra Roy, Robiul Alam and Saiful M. Islam\",\"doi\":\"10.1039/D4DT00883A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Water constitutes an indispensable resource for global life but remains susceptible to pollution from diverse human activities. To mitigate this issue, researchers are committed to purifying water using a variety of materials to remove harmful chemicals, such as heavy metals. Layered double hydroxides (LDHs), with their intriguing, layered structure and chemical behavior, have attained substantial attention for their effectiveness in removing heavy metal cations and various inorganic oxoanions from water. To enhance the efficiency, considerable endeavors have focused on functionalizing LDHs with different chemical species. Intercalation with metal sulfides has proven to be particularly effective, facilitating heavy metal absorption through multiple mechanisms, including ion-exchange, reductive precipitation, and surface sorption. This review concentrates on the synthesis and performance of polysulfide (S<small><sub><em>x</em></sub></small>, <em>x</em> = 2–5), Mo–S, and Sn–S anion intercalated LDHs for heavy metal cations and inorganic oxoanion sorption, along with their mechanisms. Furthermore, the discussion includes prospects for expanding the chemistry of metal sulfide intercalated LDHs, with existing challenges and future outlooks.</p>\",\"PeriodicalId\":71,\"journal\":{\"name\":\"Dalton Transactions\",\"volume\":\" 24\",\"pages\":\" 10037-10049\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dalton Transactions\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/dt/d4dt00883a\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dt/d4dt00883a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Metal-sulfide/polysulfide functionalized layered double hydroxides – recent progress in the removal of heavy metal ions and oxoanionic species from aqueous solutions
Water constitutes an indispensable resource for global life but remains susceptible to pollution from diverse human activities. To mitigate this issue, researchers are committed to purifying water using a variety of materials to remove harmful chemicals, such as heavy metals. Layered double hydroxides (LDHs), with their intriguing, layered structure and chemical behavior, have attained substantial attention for their effectiveness in removing heavy metal cations and various inorganic oxoanions from water. To enhance the efficiency, considerable endeavors have focused on functionalizing LDHs with different chemical species. Intercalation with metal sulfides has proven to be particularly effective, facilitating heavy metal absorption through multiple mechanisms, including ion-exchange, reductive precipitation, and surface sorption. This review concentrates on the synthesis and performance of polysulfide (Sx, x = 2–5), Mo–S, and Sn–S anion intercalated LDHs for heavy metal cations and inorganic oxoanion sorption, along with their mechanisms. Furthermore, the discussion includes prospects for expanding the chemistry of metal sulfide intercalated LDHs, with existing challenges and future outlooks.
期刊介绍:
Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.