Mayra Flores-Tolentino, José Luis Villaseñor, Guillermo Ibarra-Manríquez, Rolando Ramírez Rodríguez, Jonas Morales-Linares, Óscar Dorado
{"title":"生态位模型的使用改进了墨西哥巴萨斯洼地的生物地理区域划分","authors":"Mayra Flores-Tolentino, José Luis Villaseñor, Guillermo Ibarra-Manríquez, Rolando Ramírez Rodríguez, Jonas Morales-Linares, Óscar Dorado","doi":"10.1111/jvs.13261","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>Biogeographic regionalization classifies zones in terms of their biotas and contributes to understanding the ecological and historical factors that affect the distribution of species. We use Ecological Niche Modeling (ENM) to complement missing information on species distribution and thus improve the accuracy of biogeographic boundaries.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Balsas Depression Floristic Province, Mexico.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Based on parameters documented in herbarium collections and environmental variables, ENM was carried out to determine the most suitable environmental conditions for a species to thrive (i.e., the species' ecological niche). The ENM and spatial analysis were used to obtain the biogeographic regionalization of the seasonally dry tropical forest (SDTF) in the Balsas Depression (BD), Mexico, through spatial analysis. Using the Maxent algorithm, we constructed ecological niche models (ENMs) of 134 flowering plant species distributed preferentially in the SDTF (characteristic species), most of them endemic to the BD. Subsequently, we obtained an incidence matrix based on the information from the 134 ENMs, which was used to analyze the turnover of species in Biodiverse software. The turnover matrix was used for Non-metric Multidimensional Scaling (NMDS) ordination and clustering analyses. Finally, the environmental predictors most related to species turnover were identified using the relative environmental turnover method.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The clustering analysis divided the SDTF in the BD into four floristic districts — two located in its western part and two in the eastern region. The NMDS differentiated, in the first component, two districts in the western region and one in the eastern. Seven environmental variables contributed significantly to explaining the turnover of species in these districts; the most significant were the elevation, pH, and precipitation of the coldest quarter.</p>\n </section>\n \n <section>\n \n <h3> Main Conclusions</h3>\n \n <p>The use of ENM for the regionalization of areas with high species richness allows for a more detailed classification of subregions and the distribution patterns of the species that define their limits. This provides a more solid theoretical basis for the investigation of biogeographic patterns.</p>\n </section>\n </div>","PeriodicalId":49965,"journal":{"name":"Journal of Vegetation Science","volume":"35 3","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jvs.13261","citationCount":"0","resultStr":"{\"title\":\"The use of ecological niche models improves biogeographic regionalization of the Balsas Depression, Mexico\",\"authors\":\"Mayra Flores-Tolentino, José Luis Villaseñor, Guillermo Ibarra-Manríquez, Rolando Ramírez Rodríguez, Jonas Morales-Linares, Óscar Dorado\",\"doi\":\"10.1111/jvs.13261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aim</h3>\\n \\n <p>Biogeographic regionalization classifies zones in terms of their biotas and contributes to understanding the ecological and historical factors that affect the distribution of species. We use Ecological Niche Modeling (ENM) to complement missing information on species distribution and thus improve the accuracy of biogeographic boundaries.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Location</h3>\\n \\n <p>Balsas Depression Floristic Province, Mexico.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Based on parameters documented in herbarium collections and environmental variables, ENM was carried out to determine the most suitable environmental conditions for a species to thrive (i.e., the species' ecological niche). The ENM and spatial analysis were used to obtain the biogeographic regionalization of the seasonally dry tropical forest (SDTF) in the Balsas Depression (BD), Mexico, through spatial analysis. Using the Maxent algorithm, we constructed ecological niche models (ENMs) of 134 flowering plant species distributed preferentially in the SDTF (characteristic species), most of them endemic to the BD. Subsequently, we obtained an incidence matrix based on the information from the 134 ENMs, which was used to analyze the turnover of species in Biodiverse software. The turnover matrix was used for Non-metric Multidimensional Scaling (NMDS) ordination and clustering analyses. Finally, the environmental predictors most related to species turnover were identified using the relative environmental turnover method.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The clustering analysis divided the SDTF in the BD into four floristic districts — two located in its western part and two in the eastern region. The NMDS differentiated, in the first component, two districts in the western region and one in the eastern. Seven environmental variables contributed significantly to explaining the turnover of species in these districts; the most significant were the elevation, pH, and precipitation of the coldest quarter.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Main Conclusions</h3>\\n \\n <p>The use of ENM for the regionalization of areas with high species richness allows for a more detailed classification of subregions and the distribution patterns of the species that define their limits. This provides a more solid theoretical basis for the investigation of biogeographic patterns.</p>\\n </section>\\n </div>\",\"PeriodicalId\":49965,\"journal\":{\"name\":\"Journal of Vegetation Science\",\"volume\":\"35 3\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jvs.13261\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vegetation Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jvs.13261\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vegetation Science","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jvs.13261","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
The use of ecological niche models improves biogeographic regionalization of the Balsas Depression, Mexico
Aim
Biogeographic regionalization classifies zones in terms of their biotas and contributes to understanding the ecological and historical factors that affect the distribution of species. We use Ecological Niche Modeling (ENM) to complement missing information on species distribution and thus improve the accuracy of biogeographic boundaries.
Location
Balsas Depression Floristic Province, Mexico.
Methods
Based on parameters documented in herbarium collections and environmental variables, ENM was carried out to determine the most suitable environmental conditions for a species to thrive (i.e., the species' ecological niche). The ENM and spatial analysis were used to obtain the biogeographic regionalization of the seasonally dry tropical forest (SDTF) in the Balsas Depression (BD), Mexico, through spatial analysis. Using the Maxent algorithm, we constructed ecological niche models (ENMs) of 134 flowering plant species distributed preferentially in the SDTF (characteristic species), most of them endemic to the BD. Subsequently, we obtained an incidence matrix based on the information from the 134 ENMs, which was used to analyze the turnover of species in Biodiverse software. The turnover matrix was used for Non-metric Multidimensional Scaling (NMDS) ordination and clustering analyses. Finally, the environmental predictors most related to species turnover were identified using the relative environmental turnover method.
Results
The clustering analysis divided the SDTF in the BD into four floristic districts — two located in its western part and two in the eastern region. The NMDS differentiated, in the first component, two districts in the western region and one in the eastern. Seven environmental variables contributed significantly to explaining the turnover of species in these districts; the most significant were the elevation, pH, and precipitation of the coldest quarter.
Main Conclusions
The use of ENM for the regionalization of areas with high species richness allows for a more detailed classification of subregions and the distribution patterns of the species that define their limits. This provides a more solid theoretical basis for the investigation of biogeographic patterns.
期刊介绍:
The Journal of Vegetation Science publishes papers on all aspects of plant community ecology, with particular emphasis on papers that develop new concepts or methods, test theory, identify general patterns, or that are otherwise likely to interest a broad international readership. Papers may focus on any aspect of vegetation science, e.g. community structure (including community assembly and plant functional types), biodiversity (including species richness and composition), spatial patterns (including plant geography and landscape ecology), temporal changes (including demography, community dynamics and palaeoecology) and processes (including ecophysiology), provided the focus is on increasing our understanding of plant communities. The Journal publishes papers on the ecology of a single species only if it plays a key role in structuring plant communities. Papers that apply ecological concepts, theories and methods to the vegetation management, conservation and restoration, and papers on vegetation survey should be directed to our associate journal, Applied Vegetation Science journal.