新型 RiPP 改性酶

IF 6.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Daniel Richter, Jörn Piel
{"title":"新型 RiPP 改性酶","authors":"Daniel Richter,&nbsp;Jörn Piel","doi":"10.1016/j.cbpa.2024.102463","DOIUrl":null,"url":null,"abstract":"<div><p>Novel discoveries in natural product biosynthesis reveal hidden bioactive compounds and expand our knowledge in enzymology. Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a rapidly growing class of natural products featuring diverse non-canonical amino acids introduced by maturation enzymes as a class-defining characteristic. Underexplored RiPP sources, such as the human microbiome, the oceans, uncultured microorganisms, and plants are rich hunting grounds for novel enzymology. Unusual α- and β-amino acids, peptide cleavages, lipidations, diverse macrocyclizations, and other features expand the range of chemical groups that are installed in RiPPs by often promiscuous enzymes. This review highlights the search for novelty in RiPP enzymology in the past two years, with respect to the discovery of new biochemical modifications but also towards novel applications.</p></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"80 ","pages":"Article 102463"},"PeriodicalIF":6.9000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1367593124000395/pdfft?md5=7cda049b2f007dbdc70542ed0bb0736b&pid=1-s2.0-S1367593124000395-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Novel types of RiPP-modifying enzymes\",\"authors\":\"Daniel Richter,&nbsp;Jörn Piel\",\"doi\":\"10.1016/j.cbpa.2024.102463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Novel discoveries in natural product biosynthesis reveal hidden bioactive compounds and expand our knowledge in enzymology. Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a rapidly growing class of natural products featuring diverse non-canonical amino acids introduced by maturation enzymes as a class-defining characteristic. Underexplored RiPP sources, such as the human microbiome, the oceans, uncultured microorganisms, and plants are rich hunting grounds for novel enzymology. Unusual α- and β-amino acids, peptide cleavages, lipidations, diverse macrocyclizations, and other features expand the range of chemical groups that are installed in RiPPs by often promiscuous enzymes. This review highlights the search for novelty in RiPP enzymology in the past two years, with respect to the discovery of new biochemical modifications but also towards novel applications.</p></div>\",\"PeriodicalId\":291,\"journal\":{\"name\":\"Current Opinion in Chemical Biology\",\"volume\":\"80 \",\"pages\":\"Article 102463\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1367593124000395/pdfft?md5=7cda049b2f007dbdc70542ed0bb0736b&pid=1-s2.0-S1367593124000395-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367593124000395\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367593124000395","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

天然产物生物合成方面的新发现揭示了隐藏的生物活性化合物,拓展了我们在酶学方面的知识。核糖体合成和翻译后修饰肽(RiPPs)是一类发展迅速的天然产物,其特点是由成熟酶引入多种非规范氨基酸,这是一类决定性特征。尚未充分开发的 RiPP 来源,如人类微生物组、海洋、未培养的微生物和植物,是新型酶学的丰富狩猎场。不寻常的 α- 和 β- 氨基酸、肽裂解、脂化、各种大环化以及其他特征扩大了通常由杂乱无章的酶在 RiPPs 中安装的化学基团的范围。本综述重点介绍了过去两年中 RiPP 酶学界在发现新的生化修饰和新的应用方面的新探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel types of RiPP-modifying enzymes

Novel discoveries in natural product biosynthesis reveal hidden bioactive compounds and expand our knowledge in enzymology. Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a rapidly growing class of natural products featuring diverse non-canonical amino acids introduced by maturation enzymes as a class-defining characteristic. Underexplored RiPP sources, such as the human microbiome, the oceans, uncultured microorganisms, and plants are rich hunting grounds for novel enzymology. Unusual α- and β-amino acids, peptide cleavages, lipidations, diverse macrocyclizations, and other features expand the range of chemical groups that are installed in RiPPs by often promiscuous enzymes. This review highlights the search for novelty in RiPP enzymology in the past two years, with respect to the discovery of new biochemical modifications but also towards novel applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Chemical Biology
Current Opinion in Chemical Biology 生物-生化与分子生物学
CiteScore
13.30
自引率
1.30%
发文量
113
审稿时长
74 days
期刊介绍: COCHBI (Current Opinion in Chemical Biology) is a systematic review journal designed to offer specialists a unique and educational platform. Its goal is to help professionals stay informed about the growing volume of information in the field of Chemical Biology through systematic reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信