福斯-柯克伍德关系的徒劳无益

IF 4.7 3区 工程技术 Q2 ELECTROCHEMISTRY
K.T. Malkow
{"title":"福斯-柯克伍德关系的徒劳无益","authors":"K.T. Malkow","doi":"10.1016/j.elecom.2024.107731","DOIUrl":null,"url":null,"abstract":"<div><p>The Fuoss-Kirkwood (FK) relation is used to derive analytical expressions for the distribution of uncorrelated relaxation times (DRT), particularly of probed biochemical and electrochemical systems, often without scrutiny. Its futility is proven simply by using the parity of impedance with complex frequencies. However, given the futile nature of the FK relation, these expressions are not suitable for validation of computed DRT spectra. Despite this, the need for such expressions persists. Addressing this need and the oversight of the dependency of the DRT value on the underlying data, the DRT is extended into the complex plane using the Hilbert transform (HT). It makes the DRT universal for any complex-valued quantity to not only quantify the extent of relaxations but also to assess their nature. keyword: distribution; integral transforms; relaxation time; superposition.</p></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"164 ","pages":"Article 107731"},"PeriodicalIF":4.7000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1388248124000742/pdfft?md5=b90d63be747b59ed5e41e63eb90c0c30&pid=1-s2.0-S1388248124000742-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On the futility of the Fuoss-Kirkwood relation\",\"authors\":\"K.T. Malkow\",\"doi\":\"10.1016/j.elecom.2024.107731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Fuoss-Kirkwood (FK) relation is used to derive analytical expressions for the distribution of uncorrelated relaxation times (DRT), particularly of probed biochemical and electrochemical systems, often without scrutiny. Its futility is proven simply by using the parity of impedance with complex frequencies. However, given the futile nature of the FK relation, these expressions are not suitable for validation of computed DRT spectra. Despite this, the need for such expressions persists. Addressing this need and the oversight of the dependency of the DRT value on the underlying data, the DRT is extended into the complex plane using the Hilbert transform (HT). It makes the DRT universal for any complex-valued quantity to not only quantify the extent of relaxations but also to assess their nature. keyword: distribution; integral transforms; relaxation time; superposition.</p></div>\",\"PeriodicalId\":304,\"journal\":{\"name\":\"Electrochemistry Communications\",\"volume\":\"164 \",\"pages\":\"Article 107731\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1388248124000742/pdfft?md5=b90d63be747b59ed5e41e63eb90c0c30&pid=1-s2.0-S1388248124000742-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochemistry Communications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1388248124000742\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124000742","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

Fuoss-Kirkwood (FK) 关系被用于推导无相关弛豫时间(DRT)分布的分析表达式,尤其是在探测生化和电化学系统时,但往往未经仔细研究。只需使用复频阻抗的奇偶性就能证明其无效性。然而,鉴于 FK 关系的无效性,这些表达式并不适合用于验证计算出的 DRT 光谱。尽管如此,对此类表达式的需求依然存在。为了满足这一需求,并解决 DRT 值对基础数据依赖性的问题,我们使用希尔伯特变换 (HT) 将 DRT 扩展到复平面。它使 DRT 适用于任何复值量,不仅能量化松弛程度,还能评估其性质。 关键词:分布;积分变换;松弛时间;叠加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the futility of the Fuoss-Kirkwood relation

The Fuoss-Kirkwood (FK) relation is used to derive analytical expressions for the distribution of uncorrelated relaxation times (DRT), particularly of probed biochemical and electrochemical systems, often without scrutiny. Its futility is proven simply by using the parity of impedance with complex frequencies. However, given the futile nature of the FK relation, these expressions are not suitable for validation of computed DRT spectra. Despite this, the need for such expressions persists. Addressing this need and the oversight of the dependency of the DRT value on the underlying data, the DRT is extended into the complex plane using the Hilbert transform (HT). It makes the DRT universal for any complex-valued quantity to not only quantify the extent of relaxations but also to assess their nature. keyword: distribution; integral transforms; relaxation time; superposition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochemistry Communications
Electrochemistry Communications 工程技术-电化学
CiteScore
8.50
自引率
3.70%
发文量
160
审稿时长
1.2 months
期刊介绍: Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信