Ruihao Niu , Jingyi Wang , Jianwei Zhou , Huan Cheng , Jianle Chen , Wenjun Wang , Donghong Liu , Enbo Xu
{"title":"挤压控制小麦胚芽的脂质保留和分布及其结合外源淀粉的应用","authors":"Ruihao Niu , Jingyi Wang , Jianwei Zhou , Huan Cheng , Jianle Chen , Wenjun Wang , Donghong Liu , Enbo Xu","doi":"10.1016/j.jfoodeng.2024.112128","DOIUrl":null,"url":null,"abstract":"<div><p>Wheat germ is an agricultural but low-economic by-product for animal feed or waste due to its susceptibility of hydrolytic/oxidative rancidities. Here, we use controllable extrusion to treat wheat germ, and with assistance of exogenous starch as lipid protective factor at different ratios (0:10 2:8, 3:7, 4:6). Oxidation of optimized germ extrudate was slowed down during storage, with total lipid retention rate reach up to ∼88.3%. Extrusion dynamic analysis showed that relatively high screw speed (100–150 rpm) significantly shortened mean residence time, increased axial diffusion velocity and reduced the loss of free and bound lipid. Type Ⅱ starch-lipid complex was changed to type Ⅰ during extrusion, with thermal transition peak declined. Wheat germ lipid was most evenly distributed under 100 rpm extrusion. The hydrogen bonding interaction between exogenous starch and lipids in wheat germ was strengthened, with significant modification in water absorption, water solubility, expansion and textual indexes.</p></div>","PeriodicalId":359,"journal":{"name":"Journal of Food Engineering","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extrusion-controlled lipid retention and distribution of wheat germ and its application combining exogenous starch\",\"authors\":\"Ruihao Niu , Jingyi Wang , Jianwei Zhou , Huan Cheng , Jianle Chen , Wenjun Wang , Donghong Liu , Enbo Xu\",\"doi\":\"10.1016/j.jfoodeng.2024.112128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wheat germ is an agricultural but low-economic by-product for animal feed or waste due to its susceptibility of hydrolytic/oxidative rancidities. Here, we use controllable extrusion to treat wheat germ, and with assistance of exogenous starch as lipid protective factor at different ratios (0:10 2:8, 3:7, 4:6). Oxidation of optimized germ extrudate was slowed down during storage, with total lipid retention rate reach up to ∼88.3%. Extrusion dynamic analysis showed that relatively high screw speed (100–150 rpm) significantly shortened mean residence time, increased axial diffusion velocity and reduced the loss of free and bound lipid. Type Ⅱ starch-lipid complex was changed to type Ⅰ during extrusion, with thermal transition peak declined. Wheat germ lipid was most evenly distributed under 100 rpm extrusion. The hydrogen bonding interaction between exogenous starch and lipids in wheat germ was strengthened, with significant modification in water absorption, water solubility, expansion and textual indexes.</p></div>\",\"PeriodicalId\":359,\"journal\":{\"name\":\"Journal of Food Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0260877424001948\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0260877424001948","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Extrusion-controlled lipid retention and distribution of wheat germ and its application combining exogenous starch
Wheat germ is an agricultural but low-economic by-product for animal feed or waste due to its susceptibility of hydrolytic/oxidative rancidities. Here, we use controllable extrusion to treat wheat germ, and with assistance of exogenous starch as lipid protective factor at different ratios (0:10 2:8, 3:7, 4:6). Oxidation of optimized germ extrudate was slowed down during storage, with total lipid retention rate reach up to ∼88.3%. Extrusion dynamic analysis showed that relatively high screw speed (100–150 rpm) significantly shortened mean residence time, increased axial diffusion velocity and reduced the loss of free and bound lipid. Type Ⅱ starch-lipid complex was changed to type Ⅰ during extrusion, with thermal transition peak declined. Wheat germ lipid was most evenly distributed under 100 rpm extrusion. The hydrogen bonding interaction between exogenous starch and lipids in wheat germ was strengthened, with significant modification in water absorption, water solubility, expansion and textual indexes.
期刊介绍:
The journal publishes original research and review papers on any subject at the interface between food and engineering, particularly those of relevance to industry, including:
Engineering properties of foods, food physics and physical chemistry; processing, measurement, control, packaging, storage and distribution; engineering aspects of the design and production of novel foods and of food service and catering; design and operation of food processes, plant and equipment; economics of food engineering, including the economics of alternative processes.
Accounts of food engineering achievements are of particular value.