{"title":"多维分区数的界限","authors":"Kristina Oganesyan","doi":"10.1016/j.ejc.2024.103982","DOIUrl":null,"url":null,"abstract":"<div><p>We obtain estimates for the number <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><mrow><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional integer partitions of a number <span><math><mi>n</mi></math></span>. It is known that the two-sided inequality <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>d</mi></mrow></msup><mo><</mo><mo>log</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo><</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>d</mi></mrow></msup></mrow></math></span> is always true and that <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow><mo>></mo><mn>1</mn></mrow></math></span> whenever <span><math><mrow><mo>log</mo><mi>n</mi><mo>></mo><mn>3</mn><mi>d</mi></mrow></math></span>. However, establishing the <span><math><mi>“</mi></math></span>right<span><math><mi>”</mi></math></span> dependence of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> on <span><math><mi>d</mi></math></span> remained an open problem. We show that if <span><math><mi>d</mi></math></span> is sufficiently small with respect to <span><math><mi>n</mi></math></span>, then <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> does not depend on <span><math><mi>d</mi></math></span>, which means that <span><math><mrow><mo>log</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> is up to an absolute constant equal to <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>d</mi></mrow></msup></math></span>. Besides, we provide estimates of <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> for different ranges of <span><math><mi>d</mi></math></span> in terms of <span><math><mi>n</mi></math></span>, which give the asymptotics of <span><math><mrow><mo>log</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> in each case.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounds for the number of multidimensional partitions\",\"authors\":\"Kristina Oganesyan\",\"doi\":\"10.1016/j.ejc.2024.103982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We obtain estimates for the number <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><mrow><mo>(</mo><mi>d</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span>-dimensional integer partitions of a number <span><math><mi>n</mi></math></span>. It is known that the two-sided inequality <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>d</mi></mrow></msup><mo><</mo><mo>log</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo><</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>d</mi></mrow></msup></mrow></math></span> is always true and that <span><math><mrow><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>d</mi><mo>)</mo></mrow><mo>></mo><mn>1</mn></mrow></math></span> whenever <span><math><mrow><mo>log</mo><mi>n</mi><mo>></mo><mn>3</mn><mi>d</mi></mrow></math></span>. However, establishing the <span><math><mi>“</mi></math></span>right<span><math><mi>”</mi></math></span> dependence of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> on <span><math><mi>d</mi></math></span> remained an open problem. We show that if <span><math><mi>d</mi></math></span> is sufficiently small with respect to <span><math><mi>n</mi></math></span>, then <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> does not depend on <span><math><mi>d</mi></math></span>, which means that <span><math><mrow><mo>log</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> is up to an absolute constant equal to <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>−</mo><mn>1</mn><mo>/</mo><mi>d</mi></mrow></msup></math></span>. Besides, we provide estimates of <span><math><mrow><msub><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> for different ranges of <span><math><mi>d</mi></math></span> in terms of <span><math><mi>n</mi></math></span>, which give the asymptotics of <span><math><mrow><mo>log</mo><msub><mrow><mi>p</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> in each case.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824000672\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000672","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
众所周知,双面不等式 C1(d)n1-1/d<logpd(n)<C2(d)n1-1/d 始终为真,并且只要 logn>3d 时,C1(d)>1。然而,建立 C2 对 d 的 "正确 "依赖关系仍然是一个未决问题。我们的研究表明,如果 d 相对于 n 足够小,那么 C2 就不依赖于 d,这意味着 logpd(n) 的绝对常数等于 n1-1/d。此外,我们还给出了不同 d 范围内 pd(n) 对 n 的估计值,并给出了每种情况下 logpd(n) 的渐近线。
Bounds for the number of multidimensional partitions
We obtain estimates for the number of -dimensional integer partitions of a number . It is known that the two-sided inequality is always true and that whenever . However, establishing the right dependence of on remained an open problem. We show that if is sufficiently small with respect to , then does not depend on , which means that is up to an absolute constant equal to . Besides, we provide estimates of for different ranges of in terms of , which give the asymptotics of in each case.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.