Taeho Mun , Haerin Park , Dong-Hyun Cha , Chang-Keun Song , Seung-Ki Min , Seok-Woo Son
{"title":"近期海面温度变暖是否加剧了 2020 年东亚夏季季风的极端降水?","authors":"Taeho Mun , Haerin Park , Dong-Hyun Cha , Chang-Keun Song , Seung-Ki Min , Seok-Woo Son","doi":"10.1016/j.wace.2024.100682","DOIUrl":null,"url":null,"abstract":"<div><p>We analyzed the possible effects of recent sea surface temperature (SST) warming on the extraordinary East Asian summer monsoon (EASM) precipitation in 2020 summer. The dynamic and thermodynamic impacts of SST are examined by conducting regional climate model experiments with observed SST and cold SST where the 22-year SST trend is removed. In the presence of warm SST, precipitation increases in low latitudes but decreases in the EASM region. This dipolar precipitation change pattern opposes the precipitation anomalies in 2020 summer, indicating that the extraordinary 2020 EASM precipitation is not likely driven by recent SST warming. The warm SST suppresses the western North Pacific subtropical high expansion and weakens the southwesterly from the South China Sea toward the EASM region. In terms of large-scale atmospheric circulations, SST-induced wind changes strengthen the local Walker circulation in the South China Sea and the Philippines and the local Hadley circulation across the EASM region. These support the reduced EASM rainfall in the control experiment compared to the cold SST experiment and imply that the precipitation reduction by dynamical effects could exceed the precipitation increase by thermodynamic effects in the EASM region under warm SST.</p></div>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212094724000434/pdfft?md5=f2da88eb9d2113f336253a93ddd1ca59&pid=1-s2.0-S2212094724000434-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Did recent sea surface temperature warming reinforce the extreme East Asian summer monsoon precipitation in 2020?\",\"authors\":\"Taeho Mun , Haerin Park , Dong-Hyun Cha , Chang-Keun Song , Seung-Ki Min , Seok-Woo Son\",\"doi\":\"10.1016/j.wace.2024.100682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We analyzed the possible effects of recent sea surface temperature (SST) warming on the extraordinary East Asian summer monsoon (EASM) precipitation in 2020 summer. The dynamic and thermodynamic impacts of SST are examined by conducting regional climate model experiments with observed SST and cold SST where the 22-year SST trend is removed. In the presence of warm SST, precipitation increases in low latitudes but decreases in the EASM region. This dipolar precipitation change pattern opposes the precipitation anomalies in 2020 summer, indicating that the extraordinary 2020 EASM precipitation is not likely driven by recent SST warming. The warm SST suppresses the western North Pacific subtropical high expansion and weakens the southwesterly from the South China Sea toward the EASM region. In terms of large-scale atmospheric circulations, SST-induced wind changes strengthen the local Walker circulation in the South China Sea and the Philippines and the local Hadley circulation across the EASM region. These support the reduced EASM rainfall in the control experiment compared to the cold SST experiment and imply that the precipitation reduction by dynamical effects could exceed the precipitation increase by thermodynamic effects in the EASM region under warm SST.</p></div>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212094724000434/pdfft?md5=f2da88eb9d2113f336253a93ddd1ca59&pid=1-s2.0-S2212094724000434-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212094724000434\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212094724000434","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Did recent sea surface temperature warming reinforce the extreme East Asian summer monsoon precipitation in 2020?
We analyzed the possible effects of recent sea surface temperature (SST) warming on the extraordinary East Asian summer monsoon (EASM) precipitation in 2020 summer. The dynamic and thermodynamic impacts of SST are examined by conducting regional climate model experiments with observed SST and cold SST where the 22-year SST trend is removed. In the presence of warm SST, precipitation increases in low latitudes but decreases in the EASM region. This dipolar precipitation change pattern opposes the precipitation anomalies in 2020 summer, indicating that the extraordinary 2020 EASM precipitation is not likely driven by recent SST warming. The warm SST suppresses the western North Pacific subtropical high expansion and weakens the southwesterly from the South China Sea toward the EASM region. In terms of large-scale atmospheric circulations, SST-induced wind changes strengthen the local Walker circulation in the South China Sea and the Philippines and the local Hadley circulation across the EASM region. These support the reduced EASM rainfall in the control experiment compared to the cold SST experiment and imply that the precipitation reduction by dynamical effects could exceed the precipitation increase by thermodynamic effects in the EASM region under warm SST.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.