António Girão , Kevin Hendrey , Freddie Illingworth , Florian Lehner , Lukas Michel , Michael Savery , Raphael Steiner
{"title":"色度编号不是赛事本地编号","authors":"António Girão , Kevin Hendrey , Freddie Illingworth , Florian Lehner , Lukas Michel , Michael Savery , Raphael Steiner","doi":"10.1016/j.jctb.2024.04.005","DOIUrl":null,"url":null,"abstract":"<div><p>Scott and Seymour conjectured the existence of a function <span><math><mi>f</mi><mo>:</mo><mi>N</mi><mo>→</mo><mi>N</mi></math></span> such that, for every graph <em>G</em> and tournament <em>T</em> on the same vertex set, <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>⩾</mo><mi>f</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span> implies that <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>[</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mi>T</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>(</mo><mi>v</mi><mo>)</mo><mo>]</mo><mo>)</mo><mo>⩾</mo><mi>k</mi></math></span> for some vertex <em>v</em>. In this note we disprove this conjecture even if <em>v</em> is replaced by a vertex set of size <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo></mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>)</mo></math></span>. As a consequence, we answer in the negative a question of Harutyunyan, Le, Thomassé, and Wu concerning the corresponding statement where the graph <em>G</em> is replaced by another tournament, and disprove a related conjecture of Nguyen, Scott, and Seymour. We also show that the setting where chromatic number is replaced by degeneracy exhibits a quite different behaviour.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"168 ","pages":"Pages 86-95"},"PeriodicalIF":1.2000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0095895624000315/pdfft?md5=96fc5d216231691bd8b06b1f5ac0f4bd&pid=1-s2.0-S0095895624000315-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Chromatic number is not tournament-local\",\"authors\":\"António Girão , Kevin Hendrey , Freddie Illingworth , Florian Lehner , Lukas Michel , Michael Savery , Raphael Steiner\",\"doi\":\"10.1016/j.jctb.2024.04.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Scott and Seymour conjectured the existence of a function <span><math><mi>f</mi><mo>:</mo><mi>N</mi><mo>→</mo><mi>N</mi></math></span> such that, for every graph <em>G</em> and tournament <em>T</em> on the same vertex set, <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>⩾</mo><mi>f</mi><mo>(</mo><mi>k</mi><mo>)</mo></math></span> implies that <span><math><mi>χ</mi><mo>(</mo><mi>G</mi><mo>[</mo><msubsup><mrow><mi>N</mi></mrow><mrow><mi>T</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>(</mo><mi>v</mi><mo>)</mo><mo>]</mo><mo>)</mo><mo>⩾</mo><mi>k</mi></math></span> for some vertex <em>v</em>. In this note we disprove this conjecture even if <em>v</em> is replaced by a vertex set of size <span><math><mi>O</mi><mo>(</mo><mi>log</mi><mo></mo><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo><mo>)</mo></math></span>. As a consequence, we answer in the negative a question of Harutyunyan, Le, Thomassé, and Wu concerning the corresponding statement where the graph <em>G</em> is replaced by another tournament, and disprove a related conjecture of Nguyen, Scott, and Seymour. We also show that the setting where chromatic number is replaced by degeneracy exhibits a quite different behaviour.</p></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"168 \",\"pages\":\"Pages 86-95\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000315/pdfft?md5=96fc5d216231691bd8b06b1f5ac0f4bd&pid=1-s2.0-S0095895624000315-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000315\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000315","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
斯科特(Scott)和西摩(Seymour)猜想存在这样一个函数 f:N→N:对于每个图 G 和同一顶点集上的锦标赛 T,χ(G)⩾f(k)意味着对于某个顶点 v,χ(G[NT+(v)])⩾k。在本注释中,我们推翻了这一猜想,即使 v 被大小为 O(log|V(G)|)的顶点集所替代。因此,我们否定地回答了 Harutyunyan、Le、Thomassé 和 Wu 提出的关于图 G 被另一个锦标赛取代时的相应问题,并推翻了 Nguyen、Scott 和 Seymour 提出的相关猜想。我们还证明,在色度数被退化性取代的情况下,会表现出截然不同的行为。
Scott and Seymour conjectured the existence of a function such that, for every graph G and tournament T on the same vertex set, implies that for some vertex v. In this note we disprove this conjecture even if v is replaced by a vertex set of size . As a consequence, we answer in the negative a question of Harutyunyan, Le, Thomassé, and Wu concerning the corresponding statement where the graph G is replaced by another tournament, and disprove a related conjecture of Nguyen, Scott, and Seymour. We also show that the setting where chromatic number is replaced by degeneracy exhibits a quite different behaviour.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.