界面上的生命:通过界面分子自组装设计生物纳米材料。

Michael A Miller, Scott Medina
{"title":"界面上的生命:通过界面分子自组装设计生物纳米材料。","authors":"Michael A Miller, Scott Medina","doi":"10.1002/wnan.1966","DOIUrl":null,"url":null,"abstract":"<p><p>Interfacial self-assembly describes the directed organization of molecules and colloids at phase boundaries. Believed to be fundamental to the inception of primordial life, interfacial assembly is exploited by a myriad of eukaryotic and prokaryotic organisms to execute physiologic activities and maintain homeostasis. Inspired by these natural systems, chemists, engineers, and materials scientists have sought to harness the thermodynamic equilibria at phase boundaries to create multi-dimensional, highly ordered, and functional nanomaterials. Recent advances in our understanding of the biophysical principles guiding molecular assembly at gas-solid, gas-liquid, solid-liquid, and liquid-liquid interphases have enhanced the rational design of functional bio-nanomaterials, particularly in the fields of biosensing, bioimaging and biotherapy. Continued development of non-canonical building blocks, paired with deeper mechanistic insights into interphase self-assembly, holds promise to yield next generation interfacial bio-nanomaterials with unique, and perhaps yet unrealized, properties. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.</p>","PeriodicalId":94267,"journal":{"name":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","volume":"16 3","pages":"e1966"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11090466/pdf/","citationCount":"0","resultStr":"{\"title\":\"Life at the interface: Engineering bio-nanomaterials through interfacial molecular self-assembly.\",\"authors\":\"Michael A Miller, Scott Medina\",\"doi\":\"10.1002/wnan.1966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interfacial self-assembly describes the directed organization of molecules and colloids at phase boundaries. Believed to be fundamental to the inception of primordial life, interfacial assembly is exploited by a myriad of eukaryotic and prokaryotic organisms to execute physiologic activities and maintain homeostasis. Inspired by these natural systems, chemists, engineers, and materials scientists have sought to harness the thermodynamic equilibria at phase boundaries to create multi-dimensional, highly ordered, and functional nanomaterials. Recent advances in our understanding of the biophysical principles guiding molecular assembly at gas-solid, gas-liquid, solid-liquid, and liquid-liquid interphases have enhanced the rational design of functional bio-nanomaterials, particularly in the fields of biosensing, bioimaging and biotherapy. Continued development of non-canonical building blocks, paired with deeper mechanistic insights into interphase self-assembly, holds promise to yield next generation interfacial bio-nanomaterials with unique, and perhaps yet unrealized, properties. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.</p>\",\"PeriodicalId\":94267,\"journal\":{\"name\":\"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology\",\"volume\":\"16 3\",\"pages\":\"e1966\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11090466/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/wnan.1966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wnan.1966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

界面自组装描述了分子和胶体在相边界的定向组织。界面组装被认为是原始生命诞生的基础,无数真核生物和原核生物都利用界面组装来执行生理活动和维持体内平衡。受这些自然系统的启发,化学家、工程师和材料科学家试图利用相界的热力学平衡来创造多维、高度有序和功能性纳米材料。最近,我们对气-固、气-液、固-液和液-液相间分子组装的生物物理原理有了更深入的了解,这促进了功能性生物纳米材料的合理设计,尤其是在生物传感、生物成像和生物治疗领域。继续开发非经典构件,并深入了解相间自组装的机理,有望产生具有独特性能(也许尚未实现)的下一代界面生物纳米材料。本文归类于生物纳米技术 > 生物学中的纳米尺度系统 治疗方法与药物发现 > 新兴技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Life at the interface: Engineering bio-nanomaterials through interfacial molecular self-assembly.

Life at the interface: Engineering bio-nanomaterials through interfacial molecular self-assembly.

Interfacial self-assembly describes the directed organization of molecules and colloids at phase boundaries. Believed to be fundamental to the inception of primordial life, interfacial assembly is exploited by a myriad of eukaryotic and prokaryotic organisms to execute physiologic activities and maintain homeostasis. Inspired by these natural systems, chemists, engineers, and materials scientists have sought to harness the thermodynamic equilibria at phase boundaries to create multi-dimensional, highly ordered, and functional nanomaterials. Recent advances in our understanding of the biophysical principles guiding molecular assembly at gas-solid, gas-liquid, solid-liquid, and liquid-liquid interphases have enhanced the rational design of functional bio-nanomaterials, particularly in the fields of biosensing, bioimaging and biotherapy. Continued development of non-canonical building blocks, paired with deeper mechanistic insights into interphase self-assembly, holds promise to yield next generation interfacial bio-nanomaterials with unique, and perhaps yet unrealized, properties. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信