{"title":"上颌全弓螺钉固位修复体的数字化和传统种植体水平印模技术的准确性:交叉随机试验。","authors":"Ammar Ghanim Jasim BDS, MSc, Mona Galal Abo Elezz MSc, PhD, Gilan Y. Altonbary BDS, MSc, PhD, Moustafa Abdou Elsyad BDS, MSc, PhD","doi":"10.1111/cid.13336","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objectives</h3>\n \n <p>This study aimed to compare the accuracy of implant-level conventional and digital impressions for atrophied maxillary ridges.</p>\n </section>\n \n <section>\n \n <h3> Materials and Methods</h3>\n \n <p>Twelve participants with atrophied edentulous maxillary ridges received six implants. Six months later and after soft tissue maturation around healing abutments, a control cast was constructed using the final passive restoration for each patient. Two types of implant-level impression techniques were carried out for each patient: (1) conventional (splinted open-tray) impression technique and (2) digital impression technique. For both techniques, scan bodies were labeled from the most distal implant on the left side (A, B, C, D, E, and F) and scanning was made. Accuracy of both techniques was measured using in vitro (two-dimensional and three-dimensional) and in vivo (clinical) methods. Two-dimensional methods include measurement of the difference in linear distances AB, AC AD, AE, and AF. Geomagic software was used to assess the three-dimensional deviation between the two impression techniques using the superimposition of standard tessellation language files. The incidence and percentage of nonpassive frameworks and framework misfits of final restorations for both types of impression techniques were assessed using the single screw test.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>For all distances, digital impressions recorded significantly higher deviation from control measurements than conventional impressions. The highest two-dimensional linear deviation was noted for AF distance and the lowest difference was noted for AB distance. For all scan bodies, digital impressions recorded significantly higher three-dimensional deviation than conventional impressions. The highest three-dimensional deviation was noted with scan bodies C and D. Digital impressions recorded a significantly higher incidence of nonpassive frameworks and framework misfits than conventional impressions. [Correction added on 11 June 2024, after first online publication: In the preceding sentence, “digital impressions” was changed to “conventional impressions” in this version.]</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Within the limitations of this study, it could be concluded that the conventional implant-level impression technique showed greater in vitro and in vivo accuracy than the digital impression technique when used for full-arch maxillary fixed restorations on inclined implants.</p>\n </section>\n </div>","PeriodicalId":50679,"journal":{"name":"Clinical Implant Dentistry and Related Research","volume":"26 4","pages":"714-723"},"PeriodicalIF":3.7000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accuracy of digital and conventional implant-level impression techniques for maxillary full-arch screw-retained prosthesis: A crossover randomized trial\",\"authors\":\"Ammar Ghanim Jasim BDS, MSc, Mona Galal Abo Elezz MSc, PhD, Gilan Y. Altonbary BDS, MSc, PhD, Moustafa Abdou Elsyad BDS, MSc, PhD\",\"doi\":\"10.1111/cid.13336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Objectives</h3>\\n \\n <p>This study aimed to compare the accuracy of implant-level conventional and digital impressions for atrophied maxillary ridges.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Materials and Methods</h3>\\n \\n <p>Twelve participants with atrophied edentulous maxillary ridges received six implants. Six months later and after soft tissue maturation around healing abutments, a control cast was constructed using the final passive restoration for each patient. Two types of implant-level impression techniques were carried out for each patient: (1) conventional (splinted open-tray) impression technique and (2) digital impression technique. For both techniques, scan bodies were labeled from the most distal implant on the left side (A, B, C, D, E, and F) and scanning was made. Accuracy of both techniques was measured using in vitro (two-dimensional and three-dimensional) and in vivo (clinical) methods. Two-dimensional methods include measurement of the difference in linear distances AB, AC AD, AE, and AF. Geomagic software was used to assess the three-dimensional deviation between the two impression techniques using the superimposition of standard tessellation language files. The incidence and percentage of nonpassive frameworks and framework misfits of final restorations for both types of impression techniques were assessed using the single screw test.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>For all distances, digital impressions recorded significantly higher deviation from control measurements than conventional impressions. The highest two-dimensional linear deviation was noted for AF distance and the lowest difference was noted for AB distance. For all scan bodies, digital impressions recorded significantly higher three-dimensional deviation than conventional impressions. The highest three-dimensional deviation was noted with scan bodies C and D. Digital impressions recorded a significantly higher incidence of nonpassive frameworks and framework misfits than conventional impressions. [Correction added on 11 June 2024, after first online publication: In the preceding sentence, “digital impressions” was changed to “conventional impressions” in this version.]</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>Within the limitations of this study, it could be concluded that the conventional implant-level impression technique showed greater in vitro and in vivo accuracy than the digital impression technique when used for full-arch maxillary fixed restorations on inclined implants.</p>\\n </section>\\n </div>\",\"PeriodicalId\":50679,\"journal\":{\"name\":\"Clinical Implant Dentistry and Related Research\",\"volume\":\"26 4\",\"pages\":\"714-723\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Implant Dentistry and Related Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cid.13336\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Implant Dentistry and Related Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cid.13336","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Accuracy of digital and conventional implant-level impression techniques for maxillary full-arch screw-retained prosthesis: A crossover randomized trial
Objectives
This study aimed to compare the accuracy of implant-level conventional and digital impressions for atrophied maxillary ridges.
Materials and Methods
Twelve participants with atrophied edentulous maxillary ridges received six implants. Six months later and after soft tissue maturation around healing abutments, a control cast was constructed using the final passive restoration for each patient. Two types of implant-level impression techniques were carried out for each patient: (1) conventional (splinted open-tray) impression technique and (2) digital impression technique. For both techniques, scan bodies were labeled from the most distal implant on the left side (A, B, C, D, E, and F) and scanning was made. Accuracy of both techniques was measured using in vitro (two-dimensional and three-dimensional) and in vivo (clinical) methods. Two-dimensional methods include measurement of the difference in linear distances AB, AC AD, AE, and AF. Geomagic software was used to assess the three-dimensional deviation between the two impression techniques using the superimposition of standard tessellation language files. The incidence and percentage of nonpassive frameworks and framework misfits of final restorations for both types of impression techniques were assessed using the single screw test.
Results
For all distances, digital impressions recorded significantly higher deviation from control measurements than conventional impressions. The highest two-dimensional linear deviation was noted for AF distance and the lowest difference was noted for AB distance. For all scan bodies, digital impressions recorded significantly higher three-dimensional deviation than conventional impressions. The highest three-dimensional deviation was noted with scan bodies C and D. Digital impressions recorded a significantly higher incidence of nonpassive frameworks and framework misfits than conventional impressions. [Correction added on 11 June 2024, after first online publication: In the preceding sentence, “digital impressions” was changed to “conventional impressions” in this version.]
Conclusion
Within the limitations of this study, it could be concluded that the conventional implant-level impression technique showed greater in vitro and in vivo accuracy than the digital impression technique when used for full-arch maxillary fixed restorations on inclined implants.
期刊介绍:
The goal of Clinical Implant Dentistry and Related Research is to advance the scientific and technical aspects relating to dental implants and related scientific subjects. Dissemination of new and evolving information related to dental implants and the related science is the primary goal of our journal.
The range of topics covered by the journals will include but be not limited to:
New scientific developments relating to bone
Implant surfaces and their relationship to the surrounding tissues
Computer aided implant designs
Computer aided prosthetic designs
Immediate implant loading
Immediate implant placement
Materials relating to bone induction and conduction
New surgical methods relating to implant placement
New materials and methods relating to implant restorations
Methods for determining implant stability
A primary focus of the journal is publication of evidenced based articles evaluating to new dental implants, techniques and multicenter studies evaluating these treatments. In addition basic science research relating to wound healing and osseointegration will be an important focus for the journal.