揭示径向 A + B → C 反应锋周围的分散和浮力动力学:微重力实验和数值模拟。

IF 4.4 1区 物理与天体物理 Q1 MULTIDISCIPLINARY SCIENCES
Yorgos Stergiou, Darío M Escala, Paszkál Papp, Dezső Horváth, Marcus J B Hauser, Fabian Brau, Anne De Wit, Ágota Tóth, Kerstin Eckert, Karin Schwarzenberger
{"title":"揭示径向 A + B → C 反应锋周围的分散和浮力动力学:微重力实验和数值模拟。","authors":"Yorgos Stergiou, Darío M Escala, Paszkál Papp, Dezső Horváth, Marcus J B Hauser, Fabian Brau, Anne De Wit, Ágota Tóth, Kerstin Eckert, Karin Schwarzenberger","doi":"10.1038/s41526-024-00390-8","DOIUrl":null,"url":null,"abstract":"<p><p>Radial Reaction-Diffusion-Advection (RDA) fronts for A + B → C reactions find wide applications in many natural and technological processes. In liquid solutions, their dynamics can be perturbed by buoyancy-driven convection due to concentration gradients across the front. In this context, we conducted microgravity experiments aboard a sounding rocket, in order to disentangle dispersion and buoyancy effects in such fronts. We studied experimentally the dynamics due to the radial injection of A in B at a constant flow rate, in absence of gravity. We compared the obtained results with numerical simulations using either radial one- (1D) or two-dimensional (2D) models. We showed that gravitational acceleration significantly distorts the RDA dynamics on ground, even if the vertical dimension of the reactor and density gradients are small. We further quantified the importance of such buoyant phenomena. Finally, we showed that 1D numerical models with radial symmetry fail to predict the dynamics of RDA fronts in thicker geometries, while 2D radial models are necessary to accurately describe RDA dynamics where Taylor-Aris dispersion is significant.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":"10 1","pages":"53"},"PeriodicalIF":4.4000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082159/pdf/","citationCount":"0","resultStr":"{\"title\":\"Unraveling dispersion and buoyancy dynamics around radial A + B → C reaction fronts: microgravity experiments and numerical simulations.\",\"authors\":\"Yorgos Stergiou, Darío M Escala, Paszkál Papp, Dezső Horváth, Marcus J B Hauser, Fabian Brau, Anne De Wit, Ágota Tóth, Kerstin Eckert, Karin Schwarzenberger\",\"doi\":\"10.1038/s41526-024-00390-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Radial Reaction-Diffusion-Advection (RDA) fronts for A + B → C reactions find wide applications in many natural and technological processes. In liquid solutions, their dynamics can be perturbed by buoyancy-driven convection due to concentration gradients across the front. In this context, we conducted microgravity experiments aboard a sounding rocket, in order to disentangle dispersion and buoyancy effects in such fronts. We studied experimentally the dynamics due to the radial injection of A in B at a constant flow rate, in absence of gravity. We compared the obtained results with numerical simulations using either radial one- (1D) or two-dimensional (2D) models. We showed that gravitational acceleration significantly distorts the RDA dynamics on ground, even if the vertical dimension of the reactor and density gradients are small. We further quantified the importance of such buoyant phenomena. Finally, we showed that 1D numerical models with radial symmetry fail to predict the dynamics of RDA fronts in thicker geometries, while 2D radial models are necessary to accurately describe RDA dynamics where Taylor-Aris dispersion is significant.</p>\",\"PeriodicalId\":54263,\"journal\":{\"name\":\"npj Microgravity\",\"volume\":\"10 1\",\"pages\":\"53\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082159/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Microgravity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41526-024-00390-8\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-024-00390-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

A + B → C 反应的径向反应-扩散-对流(RDA)前沿广泛应用于许多自然和技术过程中。在液态溶液中,由于前沿的浓度梯度,它们的动力学会受到浮力驱动的对流的干扰。在这种情况下,我们在探空火箭上进行了微重力实验,以区分这种前沿的分散效应和浮力效应。我们通过实验研究了在没有重力的情况下,以恒定流速向 B 中径向注入 A 的动力学。我们将获得的结果与使用径向一维(1D)或二维(2D)模型进行的数值模拟进行了比较。我们发现,即使反应器的垂直尺寸和密度梯度很小,重力加速度也会严重扭曲地面上的 RDA 动力学。我们进一步量化了这种浮力现象的重要性。最后,我们表明,具有径向对称性的一维数值模型无法预测较厚几何结构中的 RDA 锋面动力学,而二维径向模型则是准确描述泰勒-阿里斯弥散显著的 RDA 动力学所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unraveling dispersion and buoyancy dynamics around radial A + B → C reaction fronts: microgravity experiments and numerical simulations.

Radial Reaction-Diffusion-Advection (RDA) fronts for A + B → C reactions find wide applications in many natural and technological processes. In liquid solutions, their dynamics can be perturbed by buoyancy-driven convection due to concentration gradients across the front. In this context, we conducted microgravity experiments aboard a sounding rocket, in order to disentangle dispersion and buoyancy effects in such fronts. We studied experimentally the dynamics due to the radial injection of A in B at a constant flow rate, in absence of gravity. We compared the obtained results with numerical simulations using either radial one- (1D) or two-dimensional (2D) models. We showed that gravitational acceleration significantly distorts the RDA dynamics on ground, even if the vertical dimension of the reactor and density gradients are small. We further quantified the importance of such buoyant phenomena. Finally, we showed that 1D numerical models with radial symmetry fail to predict the dynamics of RDA fronts in thicker geometries, while 2D radial models are necessary to accurately describe RDA dynamics where Taylor-Aris dispersion is significant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Microgravity
npj Microgravity Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍: A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信