Mingyang Li, Jia Yang, Luqi Zhou, Jing Zhang, Yang Li, Jun Chen, Haiyan Dong, Lifang Zhang, Shanli Zhu
{"title":"针对 MOMP 的新型亲和素对沙眼衣原体的体外和体内疗效。","authors":"Mingyang Li, Jia Yang, Luqi Zhou, Jing Zhang, Yang Li, Jun Chen, Haiyan Dong, Lifang Zhang, Shanli Zhu","doi":"10.1093/infdis/jiae257","DOIUrl":null,"url":null,"abstract":"<p><p>Targeted therapy is an attractive approach for treating infectious diseases. Affibody molecules have similar capability to antibodies that facilitate molecular recognition in both diagnostic and therapeutic applications. Targeting major outer membrane protein (MOMP) for treating infection of Chlamydia trachomatis, one of the most common sexually transmitted pathogens, is a promising therapeutic approach. Previously, we have reported a MOMP-specific affibody (ZMOMP:461) from phage display library. Here, we first fused it with modified Pseudomonas exotoxin (PE38KDEL) and a cell-penetrating peptide (CPP) to develop an affitoxin, Z461X-CPP. We then verified the addition of both toxin and CPPs that did not affect the affinitive capability of ZMOMP:461 to MOMP. Upon uptake by C trachomatis-infected cells, Z461X-CPP induced cell apoptosis in vitro. In an animal model, Z461X significantly shortened the duration of C trachomatis infection and prevented pathological damage in the mouse reproductive system. These findings provide compelling evidence that the MOMP-specific affitoxin has great potential for targeting therapy of C trachomatis infection.</p>","PeriodicalId":50179,"journal":{"name":"Journal of Infectious Diseases","volume":" ","pages":"1476-1487"},"PeriodicalIF":5.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficacy of a Novel Affitoxin Targeting Major Outer Membrane Protein Against Chlamydia trachomatis In Vitro and In Vivo.\",\"authors\":\"Mingyang Li, Jia Yang, Luqi Zhou, Jing Zhang, Yang Li, Jun Chen, Haiyan Dong, Lifang Zhang, Shanli Zhu\",\"doi\":\"10.1093/infdis/jiae257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Targeted therapy is an attractive approach for treating infectious diseases. Affibody molecules have similar capability to antibodies that facilitate molecular recognition in both diagnostic and therapeutic applications. Targeting major outer membrane protein (MOMP) for treating infection of Chlamydia trachomatis, one of the most common sexually transmitted pathogens, is a promising therapeutic approach. Previously, we have reported a MOMP-specific affibody (ZMOMP:461) from phage display library. Here, we first fused it with modified Pseudomonas exotoxin (PE38KDEL) and a cell-penetrating peptide (CPP) to develop an affitoxin, Z461X-CPP. We then verified the addition of both toxin and CPPs that did not affect the affinitive capability of ZMOMP:461 to MOMP. Upon uptake by C trachomatis-infected cells, Z461X-CPP induced cell apoptosis in vitro. In an animal model, Z461X significantly shortened the duration of C trachomatis infection and prevented pathological damage in the mouse reproductive system. These findings provide compelling evidence that the MOMP-specific affitoxin has great potential for targeting therapy of C trachomatis infection.</p>\",\"PeriodicalId\":50179,\"journal\":{\"name\":\"Journal of Infectious Diseases\",\"volume\":\" \",\"pages\":\"1476-1487\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/infdis/jiae257\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/infdis/jiae257","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Efficacy of a Novel Affitoxin Targeting Major Outer Membrane Protein Against Chlamydia trachomatis In Vitro and In Vivo.
Targeted therapy is an attractive approach for treating infectious diseases. Affibody molecules have similar capability to antibodies that facilitate molecular recognition in both diagnostic and therapeutic applications. Targeting major outer membrane protein (MOMP) for treating infection of Chlamydia trachomatis, one of the most common sexually transmitted pathogens, is a promising therapeutic approach. Previously, we have reported a MOMP-specific affibody (ZMOMP:461) from phage display library. Here, we first fused it with modified Pseudomonas exotoxin (PE38KDEL) and a cell-penetrating peptide (CPP) to develop an affitoxin, Z461X-CPP. We then verified the addition of both toxin and CPPs that did not affect the affinitive capability of ZMOMP:461 to MOMP. Upon uptake by C trachomatis-infected cells, Z461X-CPP induced cell apoptosis in vitro. In an animal model, Z461X significantly shortened the duration of C trachomatis infection and prevented pathological damage in the mouse reproductive system. These findings provide compelling evidence that the MOMP-specific affitoxin has great potential for targeting therapy of C trachomatis infection.
期刊介绍:
Published continuously since 1904, The Journal of Infectious Diseases (JID) is the premier global journal for original research on infectious diseases. The editors welcome Major Articles and Brief Reports describing research results on microbiology, immunology, epidemiology, and related disciplines, on the pathogenesis, diagnosis, and treatment of infectious diseases; on the microbes that cause them; and on disorders of host immune responses. JID is an official publication of the Infectious Diseases Society of America.