Md Biddut Hossain, Rupali Kiran Shinde, Shariar Md Imtiaz, F M Fahmid Hossain, Seok-Hee Jeon, Ki-Chul Kwon, Nam Kim
{"title":"用斯温变换器和 Unet 架构纠正磁共振图像重建中的运动伪影","authors":"Md Biddut Hossain, Rupali Kiran Shinde, Shariar Md Imtiaz, F M Fahmid Hossain, Seok-Hee Jeon, Ki-Chul Kwon, Nam Kim","doi":"10.1155/2024/8972980","DOIUrl":null,"url":null,"abstract":"<p><p>We present a deep learning-based method that corrects motion artifacts and thus accelerates data acquisition and reconstruction of magnetic resonance images. The novel model, the Motion Artifact Correction by Swin Network (MACS-Net), uses a Swin transformer layer as the fundamental block and the Unet architecture as the neural network backbone. We employ a hierarchical transformer with shifted windows to extract multiscale contextual features during encoding. A new dual upsampling technique is employed to enhance the spatial resolutions of feature maps in the Swin transformer-based decoder layer. A raw magnetic resonance imaging dataset is used for network training and testing; the data contain various motion artifacts with ground truth images of the same subjects. The results were compared to six state-of-the-art MRI image motion correction methods using two types of motions. When motions were brief (within 5 s), the method reduced the average normalized root mean square error (NRMSE) from 45.25% to 17.51%, increased the mean structural similarity index measure (SSIM) from 79.43% to 91.72%, and increased the peak signal-to-noise ratio (PSNR) from 18.24 to 26.57 dB. Similarly, when motions were extended from 5 to 10 s, our approach decreased the average NRMSE from 60.30% to 21.04%, improved the mean SSIM from 33.86% to 90.33%, and increased the PSNR from 15.64 to 24.99 dB. The anatomical structures of the corrected images and the motion-free brain data were similar.</p>","PeriodicalId":47063,"journal":{"name":"International Journal of Biomedical Imaging","volume":"2024 ","pages":"8972980"},"PeriodicalIF":3.3000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11081754/pdf/","citationCount":"0","resultStr":"{\"title\":\"Swin Transformer and the Unet Architecture to Correct Motion Artifacts in Magnetic Resonance Image Reconstruction.\",\"authors\":\"Md Biddut Hossain, Rupali Kiran Shinde, Shariar Md Imtiaz, F M Fahmid Hossain, Seok-Hee Jeon, Ki-Chul Kwon, Nam Kim\",\"doi\":\"10.1155/2024/8972980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a deep learning-based method that corrects motion artifacts and thus accelerates data acquisition and reconstruction of magnetic resonance images. The novel model, the Motion Artifact Correction by Swin Network (MACS-Net), uses a Swin transformer layer as the fundamental block and the Unet architecture as the neural network backbone. We employ a hierarchical transformer with shifted windows to extract multiscale contextual features during encoding. A new dual upsampling technique is employed to enhance the spatial resolutions of feature maps in the Swin transformer-based decoder layer. A raw magnetic resonance imaging dataset is used for network training and testing; the data contain various motion artifacts with ground truth images of the same subjects. The results were compared to six state-of-the-art MRI image motion correction methods using two types of motions. When motions were brief (within 5 s), the method reduced the average normalized root mean square error (NRMSE) from 45.25% to 17.51%, increased the mean structural similarity index measure (SSIM) from 79.43% to 91.72%, and increased the peak signal-to-noise ratio (PSNR) from 18.24 to 26.57 dB. Similarly, when motions were extended from 5 to 10 s, our approach decreased the average NRMSE from 60.30% to 21.04%, improved the mean SSIM from 33.86% to 90.33%, and increased the PSNR from 15.64 to 24.99 dB. The anatomical structures of the corrected images and the motion-free brain data were similar.</p>\",\"PeriodicalId\":47063,\"journal\":{\"name\":\"International Journal of Biomedical Imaging\",\"volume\":\"2024 \",\"pages\":\"8972980\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11081754/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomedical Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/8972980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2024/8972980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Swin Transformer and the Unet Architecture to Correct Motion Artifacts in Magnetic Resonance Image Reconstruction.
We present a deep learning-based method that corrects motion artifacts and thus accelerates data acquisition and reconstruction of magnetic resonance images. The novel model, the Motion Artifact Correction by Swin Network (MACS-Net), uses a Swin transformer layer as the fundamental block and the Unet architecture as the neural network backbone. We employ a hierarchical transformer with shifted windows to extract multiscale contextual features during encoding. A new dual upsampling technique is employed to enhance the spatial resolutions of feature maps in the Swin transformer-based decoder layer. A raw magnetic resonance imaging dataset is used for network training and testing; the data contain various motion artifacts with ground truth images of the same subjects. The results were compared to six state-of-the-art MRI image motion correction methods using two types of motions. When motions were brief (within 5 s), the method reduced the average normalized root mean square error (NRMSE) from 45.25% to 17.51%, increased the mean structural similarity index measure (SSIM) from 79.43% to 91.72%, and increased the peak signal-to-noise ratio (PSNR) from 18.24 to 26.57 dB. Similarly, when motions were extended from 5 to 10 s, our approach decreased the average NRMSE from 60.30% to 21.04%, improved the mean SSIM from 33.86% to 90.33%, and increased the PSNR from 15.64 to 24.99 dB. The anatomical structures of the corrected images and the motion-free brain data were similar.
期刊介绍:
The International Journal of Biomedical Imaging is managed by a board of editors comprising internationally renowned active researchers. The journal is freely accessible online and also offered for purchase in print format. It employs a web-based review system to ensure swift turnaround times while maintaining high standards. In addition to regular issues, special issues are organized by guest editors. The subject areas covered include (but are not limited to):
Digital radiography and tomosynthesis
X-ray computed tomography (CT)
Magnetic resonance imaging (MRI)
Single photon emission computed tomography (SPECT)
Positron emission tomography (PET)
Ultrasound imaging
Diffuse optical tomography, coherence, fluorescence, bioluminescence tomography, impedance tomography
Neutron imaging for biomedical applications
Magnetic and optical spectroscopy, and optical biopsy
Optical, electron, scanning tunneling/atomic force microscopy
Small animal imaging
Functional, cellular, and molecular imaging
Imaging assays for screening and molecular analysis
Microarray image analysis and bioinformatics
Emerging biomedical imaging techniques
Imaging modality fusion
Biomedical imaging instrumentation
Biomedical image processing, pattern recognition, and analysis
Biomedical image visualization, compression, transmission, and storage
Imaging and modeling related to systems biology and systems biomedicine
Applied mathematics, applied physics, and chemistry related to biomedical imaging
Grid-enabling technology for biomedical imaging and informatics