Shishir Shetty, Supriya Bhat, Saad Al Bayatti, Sausan Al Kawas, Wael Talaat, Mohamed El-Kishawi, Natheer Al Rawi, Sangeetha Narasimhan, Hiba Al-Daghestani, Medhini Madi, Raghavendra Shetty
{"title":"虚拟现实模拟器在放射学教育中的应用范围:系统性文献综述。","authors":"Shishir Shetty, Supriya Bhat, Saad Al Bayatti, Sausan Al Kawas, Wael Talaat, Mohamed El-Kishawi, Natheer Al Rawi, Sangeetha Narasimhan, Hiba Al-Daghestani, Medhini Madi, Raghavendra Shetty","doi":"10.2196/52953","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In recent years, virtual reality (VR) has gained significant importance in medical education. Radiology education also has seen the induction of VR technology. However, there is no comprehensive review in this specific area. This review aims to fill this knowledge gap.</p><p><strong>Objective: </strong>This systematic literature review aims to explore the scope of VR use in radiology education.</p><p><strong>Methods: </strong>A literature search was carried out using PubMed, Scopus, ScienceDirect, and Google Scholar for articles relating to the use of VR in radiology education, published from database inception to September 1, 2023. The identified articles were then subjected to a PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)-defined study selection process.</p><p><strong>Results: </strong>The database search identified 2503 nonduplicate articles. After PRISMA screening, 17 were included in the review for analysis, of which 3 (18%) were randomized controlled trials, 7 (41%) were randomized experimental trials, and 7 (41%) were cross-sectional studies. Of the 10 randomized trials, 3 (30%) had a low risk of bias, 5 (50%) showed some concerns, and 2 (20%) had a high risk of bias. Among the 7 cross-sectional studies, 2 (29%) scored \"good\" in the overall quality and the remaining 5 (71%) scored \"fair.\" VR was found to be significantly more effective than traditional methods of teaching in improving the radiographic and radiologic skills of students. The use of VR systems was found to improve the students' skills in overall proficiency, patient positioning, equipment knowledge, equipment handling, and radiographic techniques. Student feedback was also reported in the included studies. The students generally provided positive feedback about the utility, ease of use, and satisfaction of VR systems, as well as their perceived positive impact on skill and knowledge acquisition.</p><p><strong>Conclusions: </strong>The evidence from this review shows that the use of VR had significant benefit for students in various aspects of radiology education. However, the variable nature of the studies included in the review reduces the scope for a comprehensive recommendation of VR use in radiology education.</p>","PeriodicalId":36236,"journal":{"name":"JMIR Medical Education","volume":"10 ","pages":"e52953"},"PeriodicalIF":3.2000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11094427/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Scope of Virtual Reality Simulators in Radiology Education: Systematic Literature Review.\",\"authors\":\"Shishir Shetty, Supriya Bhat, Saad Al Bayatti, Sausan Al Kawas, Wael Talaat, Mohamed El-Kishawi, Natheer Al Rawi, Sangeetha Narasimhan, Hiba Al-Daghestani, Medhini Madi, Raghavendra Shetty\",\"doi\":\"10.2196/52953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>In recent years, virtual reality (VR) has gained significant importance in medical education. Radiology education also has seen the induction of VR technology. However, there is no comprehensive review in this specific area. This review aims to fill this knowledge gap.</p><p><strong>Objective: </strong>This systematic literature review aims to explore the scope of VR use in radiology education.</p><p><strong>Methods: </strong>A literature search was carried out using PubMed, Scopus, ScienceDirect, and Google Scholar for articles relating to the use of VR in radiology education, published from database inception to September 1, 2023. The identified articles were then subjected to a PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)-defined study selection process.</p><p><strong>Results: </strong>The database search identified 2503 nonduplicate articles. After PRISMA screening, 17 were included in the review for analysis, of which 3 (18%) were randomized controlled trials, 7 (41%) were randomized experimental trials, and 7 (41%) were cross-sectional studies. Of the 10 randomized trials, 3 (30%) had a low risk of bias, 5 (50%) showed some concerns, and 2 (20%) had a high risk of bias. Among the 7 cross-sectional studies, 2 (29%) scored \\\"good\\\" in the overall quality and the remaining 5 (71%) scored \\\"fair.\\\" VR was found to be significantly more effective than traditional methods of teaching in improving the radiographic and radiologic skills of students. The use of VR systems was found to improve the students' skills in overall proficiency, patient positioning, equipment knowledge, equipment handling, and radiographic techniques. Student feedback was also reported in the included studies. The students generally provided positive feedback about the utility, ease of use, and satisfaction of VR systems, as well as their perceived positive impact on skill and knowledge acquisition.</p><p><strong>Conclusions: </strong>The evidence from this review shows that the use of VR had significant benefit for students in various aspects of radiology education. However, the variable nature of the studies included in the review reduces the scope for a comprehensive recommendation of VR use in radiology education.</p>\",\"PeriodicalId\":36236,\"journal\":{\"name\":\"JMIR Medical Education\",\"volume\":\"10 \",\"pages\":\"e52953\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11094427/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JMIR Medical Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2196/52953\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION, SCIENTIFIC DISCIPLINES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/52953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
The Scope of Virtual Reality Simulators in Radiology Education: Systematic Literature Review.
Background: In recent years, virtual reality (VR) has gained significant importance in medical education. Radiology education also has seen the induction of VR technology. However, there is no comprehensive review in this specific area. This review aims to fill this knowledge gap.
Objective: This systematic literature review aims to explore the scope of VR use in radiology education.
Methods: A literature search was carried out using PubMed, Scopus, ScienceDirect, and Google Scholar for articles relating to the use of VR in radiology education, published from database inception to September 1, 2023. The identified articles were then subjected to a PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)-defined study selection process.
Results: The database search identified 2503 nonduplicate articles. After PRISMA screening, 17 were included in the review for analysis, of which 3 (18%) were randomized controlled trials, 7 (41%) were randomized experimental trials, and 7 (41%) were cross-sectional studies. Of the 10 randomized trials, 3 (30%) had a low risk of bias, 5 (50%) showed some concerns, and 2 (20%) had a high risk of bias. Among the 7 cross-sectional studies, 2 (29%) scored "good" in the overall quality and the remaining 5 (71%) scored "fair." VR was found to be significantly more effective than traditional methods of teaching in improving the radiographic and radiologic skills of students. The use of VR systems was found to improve the students' skills in overall proficiency, patient positioning, equipment knowledge, equipment handling, and radiographic techniques. Student feedback was also reported in the included studies. The students generally provided positive feedback about the utility, ease of use, and satisfaction of VR systems, as well as their perceived positive impact on skill and knowledge acquisition.
Conclusions: The evidence from this review shows that the use of VR had significant benefit for students in various aspects of radiology education. However, the variable nature of the studies included in the review reduces the scope for a comprehensive recommendation of VR use in radiology education.