Laura García-López, Alejandro Zamora-Vélez, Mónica Vargas-Montes, Juan Camilo Sanchez-Arcila, François Fasquelle, Didier Betbeder, Jorge Enrique Gómez-Marín
{"title":"麦芽糊精纳米颗粒中的弓形虫抗原对人类 T 细胞的激活作用","authors":"Laura García-López, Alejandro Zamora-Vélez, Mónica Vargas-Montes, Juan Camilo Sanchez-Arcila, François Fasquelle, Didier Betbeder, Jorge Enrique Gómez-Marín","doi":"10.26508/lsa.202302486","DOIUrl":null,"url":null,"abstract":"<p><p>Toxoplasmosis is the most prevalent parasitic zoonosis worldwide, causing ocular and neurological diseases. No vaccine has been approved for human use. We evaluated the response of peripheral blood mononuclear cells (PBMCs) to a novel construct of <i>Toxoplasma gondii</i> total antigen in maltodextrin nanoparticles (NP/TE) in individuals with varying infectious statuses (uninfected, chronic asymptomatic, or ocular toxoplasmosis). We analyzed the concentration of IFN-γ after NP/TE ex vivo stimulation using ELISA and the immunophenotypes of CD4<sup>+</sup> and CD8<sup>+</sup> cell populations using flow cytometry. In addition, serotyping of individuals with toxoplasmosis was performed by ELISA using GRA6-derived polypeptides. Low doses of NP/TE stimulation (0.9 μg NP/0.3 μg TE) achieved IFN-γ-specific production in previously exposed human PBMCs without significant differences in the infecting serotype. Increased IFN-γ expression in CD4<sup>+</sup> effector memory cell subsets was found in patients with ocular toxoplasmosis with NP/TE but not with TE alone. This is the first study to show how T-cell subsets respond to ex vivo stimulation with a vaccine candidate for human toxoplasmosis, providing crucial insights for future clinical trials.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"7 7","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082450/pdf/","citationCount":"0","resultStr":"{\"title\":\"Human T-cell activation with <i>Toxoplasma gondii</i> antigens loaded in maltodextrin nanoparticles.\",\"authors\":\"Laura García-López, Alejandro Zamora-Vélez, Mónica Vargas-Montes, Juan Camilo Sanchez-Arcila, François Fasquelle, Didier Betbeder, Jorge Enrique Gómez-Marín\",\"doi\":\"10.26508/lsa.202302486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Toxoplasmosis is the most prevalent parasitic zoonosis worldwide, causing ocular and neurological diseases. No vaccine has been approved for human use. We evaluated the response of peripheral blood mononuclear cells (PBMCs) to a novel construct of <i>Toxoplasma gondii</i> total antigen in maltodextrin nanoparticles (NP/TE) in individuals with varying infectious statuses (uninfected, chronic asymptomatic, or ocular toxoplasmosis). We analyzed the concentration of IFN-γ after NP/TE ex vivo stimulation using ELISA and the immunophenotypes of CD4<sup>+</sup> and CD8<sup>+</sup> cell populations using flow cytometry. In addition, serotyping of individuals with toxoplasmosis was performed by ELISA using GRA6-derived polypeptides. Low doses of NP/TE stimulation (0.9 μg NP/0.3 μg TE) achieved IFN-γ-specific production in previously exposed human PBMCs without significant differences in the infecting serotype. Increased IFN-γ expression in CD4<sup>+</sup> effector memory cell subsets was found in patients with ocular toxoplasmosis with NP/TE but not with TE alone. This is the first study to show how T-cell subsets respond to ex vivo stimulation with a vaccine candidate for human toxoplasmosis, providing crucial insights for future clinical trials.</p>\",\"PeriodicalId\":18081,\"journal\":{\"name\":\"Life Science Alliance\",\"volume\":\"7 7\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11082450/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life Science Alliance\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.26508/lsa.202302486\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Science Alliance","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.26508/lsa.202302486","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Human T-cell activation with Toxoplasma gondii antigens loaded in maltodextrin nanoparticles.
Toxoplasmosis is the most prevalent parasitic zoonosis worldwide, causing ocular and neurological diseases. No vaccine has been approved for human use. We evaluated the response of peripheral blood mononuclear cells (PBMCs) to a novel construct of Toxoplasma gondii total antigen in maltodextrin nanoparticles (NP/TE) in individuals with varying infectious statuses (uninfected, chronic asymptomatic, or ocular toxoplasmosis). We analyzed the concentration of IFN-γ after NP/TE ex vivo stimulation using ELISA and the immunophenotypes of CD4+ and CD8+ cell populations using flow cytometry. In addition, serotyping of individuals with toxoplasmosis was performed by ELISA using GRA6-derived polypeptides. Low doses of NP/TE stimulation (0.9 μg NP/0.3 μg TE) achieved IFN-γ-specific production in previously exposed human PBMCs without significant differences in the infecting serotype. Increased IFN-γ expression in CD4+ effector memory cell subsets was found in patients with ocular toxoplasmosis with NP/TE but not with TE alone. This is the first study to show how T-cell subsets respond to ex vivo stimulation with a vaccine candidate for human toxoplasmosis, providing crucial insights for future clinical trials.
期刊介绍:
Life Science Alliance is a global, open-access, editorially independent, and peer-reviewed journal launched by an alliance of EMBO Press, Rockefeller University Press, and Cold Spring Harbor Laboratory Press. Life Science Alliance is committed to rapid, fair, and transparent publication of valuable research from across all areas in the life sciences.