{"title":"靶向 cathepsin S 可促进 OLF1-BDNF/TrkB 轴的激活,从而增强认知功能。","authors":"Hao-Wei Lee, Szu-Jung Chen, Kuen-Jer Tsai, Kuei-Sen Hsu, Yi-Fan Chen, Chih-Hua Chang, Hsiao-Han Lin, Wen-Yun Hsueh, Hsing-Pang Hsieh, Yueh-Feng Lee, Huai-Chueh Chiang, Jang-Yang Chang","doi":"10.1186/s12929-024-01037-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cathepsin S (CTSS) is a cysteine protease that played diverse roles in immunity, tumor metastasis, aging and other pathological alterations. At the cellular level, increased CTSS levels have been associated with the secretion of pro-inflammatory cytokines and disrupted the homeostasis of Ca<sup>2+</sup> flux. Once CTSS was suppressed, elevated levels of anti-inflammatory cytokines and changes of Ca<sup>2+</sup> influx were observed. These findings have inspired us to explore the potential role of CTSS on cognitive functions.</p><p><strong>Methods: </strong>We conducted classic Y-maze and Barnes Maze tests to assess the spatial and working memory of Ctss<sup>-/-</sup> mice, Ctss<sup>+/+</sup> mice and Ctss<sup>+/+</sup> mice injected with the CTSS inhibitor (RJW-58). Ex vivo analyses including long-term potentiation (LTP), Golgi staining, immunofluorescence staining of sectioned whole brain tissues obtained from experimental animals were conducted. Furthermore, molecular studies were carried out using cultured HT-22 cell line and primary cortical neurons that treated with RJW-58 to comprehensively assess the gene and protein expressions.</p><p><strong>Results: </strong>Our findings reported that targeting cathepsin S (CTSS) yields improvements in cognitive function, enhancing both working and spatial memory in behavior models. Ex vivo studies showed elevated levels of long-term potentiation levels and increased synaptic complexity. Microarray analysis demonstrated that brain-derived neurotrophic factor (BDNF) was upregulated when CTSS was knocked down by using siRNA. Moreover, the pharmacological blockade of the CTSS enzymatic activity promoted BDNF expression in a dose- and time-dependent manner. Notably, the inhibition of CTSS was associated with increased neurogenesis in the murine dentate gyrus. These results suggested a promising role of CTSS modulation in cognitive enhancement and neurogenesis.</p><p><strong>Conclusion: </strong>Our findings suggest a critical role of CTSS in the regulation of cognitive function by modulating the Ca<sup>2+</sup> influx, leading to enhanced activation of the BDNF/TrkB axis. Our study may provide a novel strategy for improving cognitive function by targeting CTSS.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":null,"pages":null},"PeriodicalIF":9.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11084077/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeting cathepsin S promotes activation of OLF1-BDNF/TrkB axis to enhance cognitive function.\",\"authors\":\"Hao-Wei Lee, Szu-Jung Chen, Kuen-Jer Tsai, Kuei-Sen Hsu, Yi-Fan Chen, Chih-Hua Chang, Hsiao-Han Lin, Wen-Yun Hsueh, Hsing-Pang Hsieh, Yueh-Feng Lee, Huai-Chueh Chiang, Jang-Yang Chang\",\"doi\":\"10.1186/s12929-024-01037-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Cathepsin S (CTSS) is a cysteine protease that played diverse roles in immunity, tumor metastasis, aging and other pathological alterations. At the cellular level, increased CTSS levels have been associated with the secretion of pro-inflammatory cytokines and disrupted the homeostasis of Ca<sup>2+</sup> flux. Once CTSS was suppressed, elevated levels of anti-inflammatory cytokines and changes of Ca<sup>2+</sup> influx were observed. These findings have inspired us to explore the potential role of CTSS on cognitive functions.</p><p><strong>Methods: </strong>We conducted classic Y-maze and Barnes Maze tests to assess the spatial and working memory of Ctss<sup>-/-</sup> mice, Ctss<sup>+/+</sup> mice and Ctss<sup>+/+</sup> mice injected with the CTSS inhibitor (RJW-58). Ex vivo analyses including long-term potentiation (LTP), Golgi staining, immunofluorescence staining of sectioned whole brain tissues obtained from experimental animals were conducted. Furthermore, molecular studies were carried out using cultured HT-22 cell line and primary cortical neurons that treated with RJW-58 to comprehensively assess the gene and protein expressions.</p><p><strong>Results: </strong>Our findings reported that targeting cathepsin S (CTSS) yields improvements in cognitive function, enhancing both working and spatial memory in behavior models. Ex vivo studies showed elevated levels of long-term potentiation levels and increased synaptic complexity. Microarray analysis demonstrated that brain-derived neurotrophic factor (BDNF) was upregulated when CTSS was knocked down by using siRNA. Moreover, the pharmacological blockade of the CTSS enzymatic activity promoted BDNF expression in a dose- and time-dependent manner. Notably, the inhibition of CTSS was associated with increased neurogenesis in the murine dentate gyrus. These results suggested a promising role of CTSS modulation in cognitive enhancement and neurogenesis.</p><p><strong>Conclusion: </strong>Our findings suggest a critical role of CTSS in the regulation of cognitive function by modulating the Ca<sup>2+</sup> influx, leading to enhanced activation of the BDNF/TrkB axis. Our study may provide a novel strategy for improving cognitive function by targeting CTSS.</p>\",\"PeriodicalId\":15365,\"journal\":{\"name\":\"Journal of Biomedical Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11084077/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12929-024-01037-2\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12929-024-01037-2","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Targeting cathepsin S promotes activation of OLF1-BDNF/TrkB axis to enhance cognitive function.
Background: Cathepsin S (CTSS) is a cysteine protease that played diverse roles in immunity, tumor metastasis, aging and other pathological alterations. At the cellular level, increased CTSS levels have been associated with the secretion of pro-inflammatory cytokines and disrupted the homeostasis of Ca2+ flux. Once CTSS was suppressed, elevated levels of anti-inflammatory cytokines and changes of Ca2+ influx were observed. These findings have inspired us to explore the potential role of CTSS on cognitive functions.
Methods: We conducted classic Y-maze and Barnes Maze tests to assess the spatial and working memory of Ctss-/- mice, Ctss+/+ mice and Ctss+/+ mice injected with the CTSS inhibitor (RJW-58). Ex vivo analyses including long-term potentiation (LTP), Golgi staining, immunofluorescence staining of sectioned whole brain tissues obtained from experimental animals were conducted. Furthermore, molecular studies were carried out using cultured HT-22 cell line and primary cortical neurons that treated with RJW-58 to comprehensively assess the gene and protein expressions.
Results: Our findings reported that targeting cathepsin S (CTSS) yields improvements in cognitive function, enhancing both working and spatial memory in behavior models. Ex vivo studies showed elevated levels of long-term potentiation levels and increased synaptic complexity. Microarray analysis demonstrated that brain-derived neurotrophic factor (BDNF) was upregulated when CTSS was knocked down by using siRNA. Moreover, the pharmacological blockade of the CTSS enzymatic activity promoted BDNF expression in a dose- and time-dependent manner. Notably, the inhibition of CTSS was associated with increased neurogenesis in the murine dentate gyrus. These results suggested a promising role of CTSS modulation in cognitive enhancement and neurogenesis.
Conclusion: Our findings suggest a critical role of CTSS in the regulation of cognitive function by modulating the Ca2+ influx, leading to enhanced activation of the BDNF/TrkB axis. Our study may provide a novel strategy for improving cognitive function by targeting CTSS.
期刊介绍:
The Journal of Biomedical Science is an open access, peer-reviewed journal that focuses on fundamental and molecular aspects of basic medical sciences. It emphasizes molecular studies of biomedical problems and mechanisms. The National Science and Technology Council (NSTC), Taiwan supports the journal and covers the publication costs for accepted articles. The journal aims to provide an international platform for interdisciplinary discussions and contribute to the advancement of medicine. It benefits both readers and authors by accelerating the dissemination of research information and providing maximum access to scholarly communication. All articles published in the Journal of Biomedical Science are included in various databases such as Biological Abstracts, BIOSIS, CABI, CAS, Citebase, Current contents, DOAJ, Embase, EmBiology, and Global Health, among others.