马铃薯富半胱氨酸受体样激酶基因家族的鉴定:揭示了 StCRLK9 对热、盐和干旱胁迫的响应。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Roshan Zameer, Khairiah Mubarak Alwutayd, Dikhnah Alshehri, Muhammad Salman Mubarik, Cheng Li, Chengde Yu, Zhifang Li
{"title":"马铃薯富半胱氨酸受体样激酶基因家族的鉴定:揭示了 StCRLK9 对热、盐和干旱胁迫的响应。","authors":"Roshan Zameer, Khairiah Mubarak Alwutayd, Dikhnah Alshehri, Muhammad Salman Mubarik, Cheng Li, Chengde Yu, Zhifang Li","doi":"10.1071/FP23320","DOIUrl":null,"url":null,"abstract":"<p><p>The investigation into cysteine-rich receptor-like kinases (CRLKs) holds pivotal significance as these conserved, upstream signalling molecules intricately regulate fundamental biological processes such as plant growth, development and stress adaptation. This study undertakes a comprehensive characterisation of CRLKs in Solanum tuberosum (potato), a staple food crop of immense economic importance. Employing comparative genomics and evolutionary analyses, we identified 10 distinct CRLK genes in potato. Further categorisation into three major groups based on sequence similarity was performed. Each CRLK member in potato was systematically named according to its chromosomal position. Multiple sequence alignment and phylogenetic analyses unveiled conserved gene structures and motifs within the same groups. The genomic distribution of CRLKs was observed across Chromosomes 2-5, 8 and 12. Gene duplication analysis highlighted a noteworthy trend, with most gene pairs exhibiting a Ka/Ks ratio greater than one, indicating positive selection of StCRLKs in potato. Salt and drought stresses significantly impacted peroxidase and catalase activities in potato seedlings. The presence of diverse cis -regulatory elements, including hormone-responsive elements, underscored their involvement in myriad biotic and abiotic stress responses. Interestingly, interactions between the phytohormone auxin and CRLK proteins unveiled a potential auxin-mediated regulatory mechanism. A holistic approach combining transcriptomics and quantitative PCR validation identified StCRLK9 as a potential candidate involved in plant response to heat, salt and drought stresses. This study lays a robust foundation for future research on the functional roles of the CRLK gene family in potatoes, offering valuable insights into their diverse regulatory mechanisms and potential applications in stress management.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of cysteine-rich receptor-like kinase gene family in potato: revealed <i>StCRLK9</i> in response to heat, salt and drought stresses.\",\"authors\":\"Roshan Zameer, Khairiah Mubarak Alwutayd, Dikhnah Alshehri, Muhammad Salman Mubarik, Cheng Li, Chengde Yu, Zhifang Li\",\"doi\":\"10.1071/FP23320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The investigation into cysteine-rich receptor-like kinases (CRLKs) holds pivotal significance as these conserved, upstream signalling molecules intricately regulate fundamental biological processes such as plant growth, development and stress adaptation. This study undertakes a comprehensive characterisation of CRLKs in Solanum tuberosum (potato), a staple food crop of immense economic importance. Employing comparative genomics and evolutionary analyses, we identified 10 distinct CRLK genes in potato. Further categorisation into three major groups based on sequence similarity was performed. Each CRLK member in potato was systematically named according to its chromosomal position. Multiple sequence alignment and phylogenetic analyses unveiled conserved gene structures and motifs within the same groups. The genomic distribution of CRLKs was observed across Chromosomes 2-5, 8 and 12. Gene duplication analysis highlighted a noteworthy trend, with most gene pairs exhibiting a Ka/Ks ratio greater than one, indicating positive selection of StCRLKs in potato. Salt and drought stresses significantly impacted peroxidase and catalase activities in potato seedlings. The presence of diverse cis -regulatory elements, including hormone-responsive elements, underscored their involvement in myriad biotic and abiotic stress responses. Interestingly, interactions between the phytohormone auxin and CRLK proteins unveiled a potential auxin-mediated regulatory mechanism. A holistic approach combining transcriptomics and quantitative PCR validation identified StCRLK9 as a potential candidate involved in plant response to heat, salt and drought stresses. This study lays a robust foundation for future research on the functional roles of the CRLK gene family in potatoes, offering valuable insights into their diverse regulatory mechanisms and potential applications in stress management.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/FP23320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP23320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

对富半胱氨酸受体样激酶(CRLKs)的研究具有举足轻重的意义,因为这些保守的上游信号分子错综复杂地调控着植物生长、发育和胁迫适应等基本生物过程。本研究全面描述了马铃薯(Solanum tuberosum)中 CRLKs 的特征,马铃薯是一种具有巨大经济价值的主食作物。通过比较基因组学和进化分析,我们在马铃薯中发现了 10 个不同的 CRLK 基因。根据序列相似性,我们将其进一步分为三大类。马铃薯中的每个 CRLK 成员都根据其染色体位置进行了系统命名。多重序列比对和系统发育分析揭示了同组内保守的基因结构和基序。在 2-5、8 和 12 号染色体上观察到了 CRLK 的基因组分布。基因重复分析突显了一个值得注意的趋势,大多数基因对的 Ka/Ks 比值大于 1,表明马铃薯中的 StCRLKs 具有正选择性。盐胁迫和干旱胁迫显著影响了马铃薯幼苗的过氧化物酶和过氧化氢酶活性。包括激素反应元件在内的多种顺式调控元件的存在突出表明,它们参与了多种生物和非生物胁迫反应。有趣的是,植物激素辅助素与 CRLK 蛋白之间的相互作用揭示了一种潜在的辅助素介导的调控机制。结合转录组学和定量 PCR 验证的综合方法发现,StCRLK9 是参与植物对热、盐和干旱胁迫响应的潜在候选蛋白。这项研究为今后研究马铃薯中 CRLK 基因家族的功能作用奠定了坚实的基础,为了解它们的不同调控机制和在胁迫管理中的潜在应用提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of cysteine-rich receptor-like kinase gene family in potato: revealed StCRLK9 in response to heat, salt and drought stresses.

The investigation into cysteine-rich receptor-like kinases (CRLKs) holds pivotal significance as these conserved, upstream signalling molecules intricately regulate fundamental biological processes such as plant growth, development and stress adaptation. This study undertakes a comprehensive characterisation of CRLKs in Solanum tuberosum (potato), a staple food crop of immense economic importance. Employing comparative genomics and evolutionary analyses, we identified 10 distinct CRLK genes in potato. Further categorisation into three major groups based on sequence similarity was performed. Each CRLK member in potato was systematically named according to its chromosomal position. Multiple sequence alignment and phylogenetic analyses unveiled conserved gene structures and motifs within the same groups. The genomic distribution of CRLKs was observed across Chromosomes 2-5, 8 and 12. Gene duplication analysis highlighted a noteworthy trend, with most gene pairs exhibiting a Ka/Ks ratio greater than one, indicating positive selection of StCRLKs in potato. Salt and drought stresses significantly impacted peroxidase and catalase activities in potato seedlings. The presence of diverse cis -regulatory elements, including hormone-responsive elements, underscored their involvement in myriad biotic and abiotic stress responses. Interestingly, interactions between the phytohormone auxin and CRLK proteins unveiled a potential auxin-mediated regulatory mechanism. A holistic approach combining transcriptomics and quantitative PCR validation identified StCRLK9 as a potential candidate involved in plant response to heat, salt and drought stresses. This study lays a robust foundation for future research on the functional roles of the CRLK gene family in potatoes, offering valuable insights into their diverse regulatory mechanisms and potential applications in stress management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信