Anthony R. Anzell, Amy B. Kunz, James P. Donovan, Thanhlong G. Tran, Xinyan Lu, Sarah Young, Beth L. Roman
{"title":"血流通过配体依赖性 Alk1 活性调节 acvrl1 的转录。","authors":"Anthony R. Anzell, Amy B. Kunz, James P. Donovan, Thanhlong G. Tran, Xinyan Lu, Sarah Young, Beth L. Roman","doi":"10.1007/s10456-024-09924-w","DOIUrl":null,"url":null,"abstract":"<div><p>Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disease characterized by the development of arteriovenous malformations (AVMs) that can result in significant morbidity and mortality. HHT is caused primarily by mutations in bone morphogenetic protein receptors <i>ACVRL1</i>/ALK1, a signaling receptor, or endoglin (<i>ENG</i>), an accessory receptor. Because overexpression of <i>Acvrl1</i> prevents AVM development in both <i>Acvrl1</i> and <i>Eng</i> null mice, enhancing <i>ACVRL1</i> expression may be a promising approach to development of targeted therapies for HHT. Therefore, we sought to understand the molecular mechanism of <i>ACVRL1</i> regulation. We previously demonstrated in zebrafish embryos that <i>acvrl1</i> is predominantly expressed in arterial endothelial cells and that expression requires blood flow. Here, we document that flow dependence exhibits regional heterogeneity and that <i>acvrl1</i> expression is rapidly restored after reinitiation of flow. Furthermore, we find that <i>acvrl1</i> expression is significantly decreased in mutants that lack the circulating Alk1 ligand, Bmp10, and that, in the absence of flow, intravascular injection of BMP10 or the related ligand, BMP9, restores <i>acvrl1</i> expression in an Alk1-dependent manner. Using a transgenic <i>acvrl1:egfp</i> reporter line, we find that flow and Bmp10 regulate <i>acvrl1</i> at the level of transcription. Finally, we observe similar ALK1 ligand-dependent increases in <i>ACVRL1</i> in human endothelial cells subjected to shear stress. These data suggest that ligand-dependent Alk1 activity acts downstream of blood flow to maintain or enhance <i>acvrl1</i> expression via a positive feedback mechanism, and that ALK1 activating therapeutics may have dual functionality by increasing both ALK1 signaling flux and <i>ACVRL1</i> expression.</p></div>","PeriodicalId":7886,"journal":{"name":"Angiogenesis","volume":"27 3","pages":"501 - 522"},"PeriodicalIF":9.2000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blood flow regulates acvrl1 transcription via ligand-dependent Alk1 activity\",\"authors\":\"Anthony R. Anzell, Amy B. Kunz, James P. Donovan, Thanhlong G. Tran, Xinyan Lu, Sarah Young, Beth L. Roman\",\"doi\":\"10.1007/s10456-024-09924-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disease characterized by the development of arteriovenous malformations (AVMs) that can result in significant morbidity and mortality. HHT is caused primarily by mutations in bone morphogenetic protein receptors <i>ACVRL1</i>/ALK1, a signaling receptor, or endoglin (<i>ENG</i>), an accessory receptor. Because overexpression of <i>Acvrl1</i> prevents AVM development in both <i>Acvrl1</i> and <i>Eng</i> null mice, enhancing <i>ACVRL1</i> expression may be a promising approach to development of targeted therapies for HHT. Therefore, we sought to understand the molecular mechanism of <i>ACVRL1</i> regulation. We previously demonstrated in zebrafish embryos that <i>acvrl1</i> is predominantly expressed in arterial endothelial cells and that expression requires blood flow. Here, we document that flow dependence exhibits regional heterogeneity and that <i>acvrl1</i> expression is rapidly restored after reinitiation of flow. Furthermore, we find that <i>acvrl1</i> expression is significantly decreased in mutants that lack the circulating Alk1 ligand, Bmp10, and that, in the absence of flow, intravascular injection of BMP10 or the related ligand, BMP9, restores <i>acvrl1</i> expression in an Alk1-dependent manner. Using a transgenic <i>acvrl1:egfp</i> reporter line, we find that flow and Bmp10 regulate <i>acvrl1</i> at the level of transcription. Finally, we observe similar ALK1 ligand-dependent increases in <i>ACVRL1</i> in human endothelial cells subjected to shear stress. These data suggest that ligand-dependent Alk1 activity acts downstream of blood flow to maintain or enhance <i>acvrl1</i> expression via a positive feedback mechanism, and that ALK1 activating therapeutics may have dual functionality by increasing both ALK1 signaling flux and <i>ACVRL1</i> expression.</p></div>\",\"PeriodicalId\":7886,\"journal\":{\"name\":\"Angiogenesis\",\"volume\":\"27 3\",\"pages\":\"501 - 522\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angiogenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10456-024-09924-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angiogenesis","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s10456-024-09924-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
Blood flow regulates acvrl1 transcription via ligand-dependent Alk1 activity
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disease characterized by the development of arteriovenous malformations (AVMs) that can result in significant morbidity and mortality. HHT is caused primarily by mutations in bone morphogenetic protein receptors ACVRL1/ALK1, a signaling receptor, or endoglin (ENG), an accessory receptor. Because overexpression of Acvrl1 prevents AVM development in both Acvrl1 and Eng null mice, enhancing ACVRL1 expression may be a promising approach to development of targeted therapies for HHT. Therefore, we sought to understand the molecular mechanism of ACVRL1 regulation. We previously demonstrated in zebrafish embryos that acvrl1 is predominantly expressed in arterial endothelial cells and that expression requires blood flow. Here, we document that flow dependence exhibits regional heterogeneity and that acvrl1 expression is rapidly restored after reinitiation of flow. Furthermore, we find that acvrl1 expression is significantly decreased in mutants that lack the circulating Alk1 ligand, Bmp10, and that, in the absence of flow, intravascular injection of BMP10 or the related ligand, BMP9, restores acvrl1 expression in an Alk1-dependent manner. Using a transgenic acvrl1:egfp reporter line, we find that flow and Bmp10 regulate acvrl1 at the level of transcription. Finally, we observe similar ALK1 ligand-dependent increases in ACVRL1 in human endothelial cells subjected to shear stress. These data suggest that ligand-dependent Alk1 activity acts downstream of blood flow to maintain or enhance acvrl1 expression via a positive feedback mechanism, and that ALK1 activating therapeutics may have dual functionality by increasing both ALK1 signaling flux and ACVRL1 expression.
期刊介绍:
Angiogenesis, a renowned international journal, seeks to publish high-quality original articles and reviews on the cellular and molecular mechanisms governing angiogenesis in both normal and pathological conditions. By serving as a primary platform for swift communication within the field of angiogenesis research, this multidisciplinary journal showcases pioneering experimental studies utilizing molecular techniques, in vitro methods, animal models, and clinical investigations into angiogenic diseases. Furthermore, Angiogenesis sheds light on cutting-edge therapeutic strategies for promoting or inhibiting angiogenesis, while also highlighting fresh markers and techniques for disease diagnosis and prognosis.