{"title":"利用兴奋剂检测相关样本进行个体鉴定的方法:线粒体和核基因数据的比较。","authors":"Kentaro Akiyama, Atsushi Momobayashi, Masato Okano","doi":"10.1002/dta.3709","DOIUrl":null,"url":null,"abstract":"<p><p>Doping offenses involve the use or attempted use of any prohibited method or substance as well as substituting samples. Consequently, it has been recommended that short tandem repeat (STR) analysis be used to determine if the doping control samples are from the same athlete. However, it has been recognized that it may be difficult to obtain full STR analysis using negligible amounts of DNA samples. Mitochondrial DNA (mtDNA) is characterized by its stability and high cellular copy number. Therefore, mtDNA testing in urine is expected to be used to analyze samples that cannot be analyzed using STR analysis. The objective of this study was to compare mtDNA testing with STR analysis by conducting sensitivity, concordance (whole blood, dried blood spot, and urine), and case-type studies. In sensitivity studies, mtDNA testing exhibited greater sensitivity compared with STR analysis. Concordance studies indicated that all samples were consistent with the mtDNA sequences and STR profiles. Allelic dropout occurred in some urine samples that were examined for STR analysis. Case-type sample studies demonstrated that mtDNA testing could be used to obtain DNA profiles of all the samples tested, including blood, dried blood spots, urine, blood residues on needles, and blood stains. In conclusion, mtDNA testing is valuable for analyzing highly degraded DNA samples, such as urine samples, compared with STR analysis. Urine testing should be performed for the initial testing procedure, because mtDNA is inherited maternally. In situations where the DNA match is detrimental to the athlete, additional blood STR analysis may be required.</p>","PeriodicalId":160,"journal":{"name":"Drug Testing and Analysis","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Individual identification method using samples associated with doping tests: A comparison of mitochondrial and nuclear genetic data.\",\"authors\":\"Kentaro Akiyama, Atsushi Momobayashi, Masato Okano\",\"doi\":\"10.1002/dta.3709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Doping offenses involve the use or attempted use of any prohibited method or substance as well as substituting samples. Consequently, it has been recommended that short tandem repeat (STR) analysis be used to determine if the doping control samples are from the same athlete. However, it has been recognized that it may be difficult to obtain full STR analysis using negligible amounts of DNA samples. Mitochondrial DNA (mtDNA) is characterized by its stability and high cellular copy number. Therefore, mtDNA testing in urine is expected to be used to analyze samples that cannot be analyzed using STR analysis. The objective of this study was to compare mtDNA testing with STR analysis by conducting sensitivity, concordance (whole blood, dried blood spot, and urine), and case-type studies. In sensitivity studies, mtDNA testing exhibited greater sensitivity compared with STR analysis. Concordance studies indicated that all samples were consistent with the mtDNA sequences and STR profiles. Allelic dropout occurred in some urine samples that were examined for STR analysis. Case-type sample studies demonstrated that mtDNA testing could be used to obtain DNA profiles of all the samples tested, including blood, dried blood spots, urine, blood residues on needles, and blood stains. In conclusion, mtDNA testing is valuable for analyzing highly degraded DNA samples, such as urine samples, compared with STR analysis. Urine testing should be performed for the initial testing procedure, because mtDNA is inherited maternally. In situations where the DNA match is detrimental to the athlete, additional blood STR analysis may be required.</p>\",\"PeriodicalId\":160,\"journal\":{\"name\":\"Drug Testing and Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Testing and Analysis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/dta.3709\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Testing and Analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/dta.3709","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
摘要
兴奋剂违规行为涉及使用或企图使用任何禁用方法或物质以及替换样品。因此,建议使用短串联重复(STR)分析来确定兴奋剂检查样本是否来自同一运动员。然而,人们已经认识到,使用微量的 DNA 样品可能难以获得完整的 STR 分析。线粒体 DNA(mtDNA)的特点是其稳定性和高细胞拷贝数。因此,尿液中的 mtDNA 检测有望用于分析无法使用 STR 分析的样本。本研究的目的是通过开展敏感性、一致性(全血、干血斑和尿液)和病例类型研究,比较 mtDNA 检测与 STR 分析。在灵敏度研究中,mtDNA 检测的灵敏度高于 STR 分析。一致性研究表明,所有样本都与 mtDNA 序列和 STR 图谱一致。一些进行 STR 分析的尿样中出现了等位基因丢失。病例类型样本研究表明,mtDNA 检测可用于获得所有检测样本的 DNA 图谱,包括血液、干血斑、尿液、针头上的血液残留物和血迹。总之,与 STR 分析相比,mtDNA 检测对分析高度降解的 DNA 样本(如尿液样本)很有价值。由于 mtDNA 是母系遗传,因此尿液检测应作为初始检测程序。在 DNA 匹配对运动员不利的情况下,可能需要进行额外的血液 STR 分析。
Individual identification method using samples associated with doping tests: A comparison of mitochondrial and nuclear genetic data.
Doping offenses involve the use or attempted use of any prohibited method or substance as well as substituting samples. Consequently, it has been recommended that short tandem repeat (STR) analysis be used to determine if the doping control samples are from the same athlete. However, it has been recognized that it may be difficult to obtain full STR analysis using negligible amounts of DNA samples. Mitochondrial DNA (mtDNA) is characterized by its stability and high cellular copy number. Therefore, mtDNA testing in urine is expected to be used to analyze samples that cannot be analyzed using STR analysis. The objective of this study was to compare mtDNA testing with STR analysis by conducting sensitivity, concordance (whole blood, dried blood spot, and urine), and case-type studies. In sensitivity studies, mtDNA testing exhibited greater sensitivity compared with STR analysis. Concordance studies indicated that all samples were consistent with the mtDNA sequences and STR profiles. Allelic dropout occurred in some urine samples that were examined for STR analysis. Case-type sample studies demonstrated that mtDNA testing could be used to obtain DNA profiles of all the samples tested, including blood, dried blood spots, urine, blood residues on needles, and blood stains. In conclusion, mtDNA testing is valuable for analyzing highly degraded DNA samples, such as urine samples, compared with STR analysis. Urine testing should be performed for the initial testing procedure, because mtDNA is inherited maternally. In situations where the DNA match is detrimental to the athlete, additional blood STR analysis may be required.
期刊介绍:
As the incidence of drugs escalates in 21st century living, their detection and analysis have become increasingly important. Sport, the workplace, crime investigation, homeland security, the pharmaceutical industry and the environment are just some of the high profile arenas in which analytical testing has provided an important investigative tool for uncovering the presence of extraneous substances.
In addition to the usual publishing fare of primary research articles, case reports and letters, Drug Testing and Analysis offers a unique combination of; ‘How to’ material such as ‘Tutorials’ and ‘Reviews’, Speculative pieces (‘Commentaries’ and ‘Perspectives'', providing a broader scientific and social context to the aspects of analytical testing), ‘Annual banned substance reviews’ (delivering a critical evaluation of the methods used in the characterization of established and newly outlawed compounds).
Rather than focus on the application of a single technique, Drug Testing and Analysis employs a unique multidisciplinary approach to the field of controversial compound determination. Papers discussing chromatography, mass spectrometry, immunological approaches, 1D/2D gel electrophoresis, to name just a few select methods, are welcomed where their application is related to any of the six key topics listed below.