{"title":"钠离子电池层状阴极材料的空气腐蚀:阳离子混合与实用抑制策略","authors":"Yifan Huang, Wujun Zhang, Yangfan Zhou, Yueqi Wang, Linsen Li, Hui Shao, Xinrui Li*, Zijian Hong*, Hui Xia*, Yanbin Shen* and Liwei Chen, ","doi":"10.1021/acsnano.4c01962","DOIUrl":null,"url":null,"abstract":"<p >Layered oxide cathodes of sodium-ion batteries (SIBs) are considered promising candidates due to their fascinating high capacity, good cyclability, and environmental friendliness. However, the air sensitivity of layered SIB cathodes causes high electrode manufacturing costs and performance deterioration, hampering their practical application. Herein, a commercial O3-type layered Na(Ni<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3</sub>)O<sub>2</sub> (NNFM) material is adopted to investigate the air corrosive problem and the suppression strategy. We reveal that once the layered material comes in contact with ambient air, cations migrate from transition metal (TM) layers to sodium layers at the near surface, although Na<sup>+</sup> and TM ions show quite different ion radii. Experimental results and theoretical calculations show that more Ni/Na disorder occurs in the air-exposed O3-NNFM materials, owing to a lower Ni migration energy barrier. The cation mixing results in detrimental structural distortion, along with the formation of residual alkali species on the surface, leading to high impedance for Na<sup>+</sup> diffusion during charge/discharge. To tackle this problem, an ultrathin and uniform hydrophobic molecular layer of perfluorodecyl trimethoxysilane is assembled on the O3-NNFM surface, which significantly suppresses unfavorable chemistry and structure degradation during air storage. The in-depth understanding of the structural degradation mechanism and suppression strategy presented in this work can facilitate high-energy cathode manufacturing from the perspective of future practical implementation and commercialization.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 20","pages":"13106–13116"},"PeriodicalIF":15.8000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Air Corrosion of Layered Cathode Materials for Sodium-Ion Batteries: Cation Mixing and a Practical Suppression Strategy\",\"authors\":\"Yifan Huang, Wujun Zhang, Yangfan Zhou, Yueqi Wang, Linsen Li, Hui Shao, Xinrui Li*, Zijian Hong*, Hui Xia*, Yanbin Shen* and Liwei Chen, \",\"doi\":\"10.1021/acsnano.4c01962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Layered oxide cathodes of sodium-ion batteries (SIBs) are considered promising candidates due to their fascinating high capacity, good cyclability, and environmental friendliness. However, the air sensitivity of layered SIB cathodes causes high electrode manufacturing costs and performance deterioration, hampering their practical application. Herein, a commercial O3-type layered Na(Ni<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3</sub>)O<sub>2</sub> (NNFM) material is adopted to investigate the air corrosive problem and the suppression strategy. We reveal that once the layered material comes in contact with ambient air, cations migrate from transition metal (TM) layers to sodium layers at the near surface, although Na<sup>+</sup> and TM ions show quite different ion radii. Experimental results and theoretical calculations show that more Ni/Na disorder occurs in the air-exposed O3-NNFM materials, owing to a lower Ni migration energy barrier. The cation mixing results in detrimental structural distortion, along with the formation of residual alkali species on the surface, leading to high impedance for Na<sup>+</sup> diffusion during charge/discharge. To tackle this problem, an ultrathin and uniform hydrophobic molecular layer of perfluorodecyl trimethoxysilane is assembled on the O3-NNFM surface, which significantly suppresses unfavorable chemistry and structure degradation during air storage. The in-depth understanding of the structural degradation mechanism and suppression strategy presented in this work can facilitate high-energy cathode manufacturing from the perspective of future practical implementation and commercialization.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"18 20\",\"pages\":\"13106–13116\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.4c01962\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c01962","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Air Corrosion of Layered Cathode Materials for Sodium-Ion Batteries: Cation Mixing and a Practical Suppression Strategy
Layered oxide cathodes of sodium-ion batteries (SIBs) are considered promising candidates due to their fascinating high capacity, good cyclability, and environmental friendliness. However, the air sensitivity of layered SIB cathodes causes high electrode manufacturing costs and performance deterioration, hampering their practical application. Herein, a commercial O3-type layered Na(Ni1/3Fe1/3Mn1/3)O2 (NNFM) material is adopted to investigate the air corrosive problem and the suppression strategy. We reveal that once the layered material comes in contact with ambient air, cations migrate from transition metal (TM) layers to sodium layers at the near surface, although Na+ and TM ions show quite different ion radii. Experimental results and theoretical calculations show that more Ni/Na disorder occurs in the air-exposed O3-NNFM materials, owing to a lower Ni migration energy barrier. The cation mixing results in detrimental structural distortion, along with the formation of residual alkali species on the surface, leading to high impedance for Na+ diffusion during charge/discharge. To tackle this problem, an ultrathin and uniform hydrophobic molecular layer of perfluorodecyl trimethoxysilane is assembled on the O3-NNFM surface, which significantly suppresses unfavorable chemistry and structure degradation during air storage. The in-depth understanding of the structural degradation mechanism and suppression strategy presented in this work can facilitate high-energy cathode manufacturing from the perspective of future practical implementation and commercialization.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.