{"title":"低质量系外行星流体动力逃逸机制的特征","authors":"J. H. Guo","doi":"10.1038/s41550-024-02269-w","DOIUrl":null,"url":null,"abstract":"Atmospheric hydrodynamic escape sculpts the population of low-mass close-in planets. However, distinguishing between the driving mechanisms responsible for the hydrodynamic escape of hydrogen-rich atmospheres is a complex task due to the involvement of many physical factors. Using simulations, I show that hydrodynamic escape can be driven solely by thermal energy deposited in the lower layers of the atmosphere, but only if the planet’s Jeans parameter is below 3. Otherwise, additional exogenous drivers are necessary. To characterize these drivers, an upgraded Jeans parameter that takes into account tidal forces is introduced. When the upgraded Jeans parameter falls below 3 or exceeds 6, atmospheric escape is primarily driven by tidal forces or extreme ultraviolet radiation from the host star, respectively. In the range 3 to 6, both factors can trigger the escape of the atmosphere. The upgraded Jeans parameter, which is closely related to the underlying physics, provides a concise method for categorizing the driving mechanisms of hydrodynamic escape. The results can also be applied to planetary evolution calculations. An updated Jeans parameter that includes tidal forces can distinguish the various driving forces, both exogenous and endogenous, of atmospheric escape from low-mass close-in exoplanets. Depending on its value, escape can be dominated by tidal forces, extreme ultraviolet stellar radiation or a combination of the two.","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"8 7","pages":"920-928"},"PeriodicalIF":12.9000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of the regimes of hydrodynamic escape from low-mass exoplanets\",\"authors\":\"J. H. Guo\",\"doi\":\"10.1038/s41550-024-02269-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atmospheric hydrodynamic escape sculpts the population of low-mass close-in planets. However, distinguishing between the driving mechanisms responsible for the hydrodynamic escape of hydrogen-rich atmospheres is a complex task due to the involvement of many physical factors. Using simulations, I show that hydrodynamic escape can be driven solely by thermal energy deposited in the lower layers of the atmosphere, but only if the planet’s Jeans parameter is below 3. Otherwise, additional exogenous drivers are necessary. To characterize these drivers, an upgraded Jeans parameter that takes into account tidal forces is introduced. When the upgraded Jeans parameter falls below 3 or exceeds 6, atmospheric escape is primarily driven by tidal forces or extreme ultraviolet radiation from the host star, respectively. In the range 3 to 6, both factors can trigger the escape of the atmosphere. The upgraded Jeans parameter, which is closely related to the underlying physics, provides a concise method for categorizing the driving mechanisms of hydrodynamic escape. The results can also be applied to planetary evolution calculations. An updated Jeans parameter that includes tidal forces can distinguish the various driving forces, both exogenous and endogenous, of atmospheric escape from low-mass close-in exoplanets. Depending on its value, escape can be dominated by tidal forces, extreme ultraviolet stellar radiation or a combination of the two.\",\"PeriodicalId\":18778,\"journal\":{\"name\":\"Nature Astronomy\",\"volume\":\"8 7\",\"pages\":\"920-928\"},\"PeriodicalIF\":12.9000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41550-024-02269-w\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41550-024-02269-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Characterization of the regimes of hydrodynamic escape from low-mass exoplanets
Atmospheric hydrodynamic escape sculpts the population of low-mass close-in planets. However, distinguishing between the driving mechanisms responsible for the hydrodynamic escape of hydrogen-rich atmospheres is a complex task due to the involvement of many physical factors. Using simulations, I show that hydrodynamic escape can be driven solely by thermal energy deposited in the lower layers of the atmosphere, but only if the planet’s Jeans parameter is below 3. Otherwise, additional exogenous drivers are necessary. To characterize these drivers, an upgraded Jeans parameter that takes into account tidal forces is introduced. When the upgraded Jeans parameter falls below 3 or exceeds 6, atmospheric escape is primarily driven by tidal forces or extreme ultraviolet radiation from the host star, respectively. In the range 3 to 6, both factors can trigger the escape of the atmosphere. The upgraded Jeans parameter, which is closely related to the underlying physics, provides a concise method for categorizing the driving mechanisms of hydrodynamic escape. The results can also be applied to planetary evolution calculations. An updated Jeans parameter that includes tidal forces can distinguish the various driving forces, both exogenous and endogenous, of atmospheric escape from low-mass close-in exoplanets. Depending on its value, escape can be dominated by tidal forces, extreme ultraviolet stellar radiation or a combination of the two.
Nature AstronomyPhysics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍:
Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas.
Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence.
In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.