超薄超材料光学二极管的量子退火辅助设计

IF 13.4 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Seongmin Kim, Su-Jin Park, Seunghyun Moon, Qiushi Zhang, Sanghyo Hwang, Sun-Kyung Kim, Tengfei Luo, Eungkyu Lee
{"title":"超薄超材料光学二极管的量子退火辅助设计","authors":"Seongmin Kim,&nbsp;Su-Jin Park,&nbsp;Seunghyun Moon,&nbsp;Qiushi Zhang,&nbsp;Sanghyo Hwang,&nbsp;Sun-Kyung Kim,&nbsp;Tengfei Luo,&nbsp;Eungkyu Lee","doi":"10.1186/s40580-024-00425-6","DOIUrl":null,"url":null,"abstract":"<div><p>Thin-film optical diodes are important elements for miniaturizing photonic systems. However, the design of optical diodes relies on empirical and heuristic approaches. This poses a significant challenge for identifying optimal structural models of optical diodes at given wavelengths. Here, we leverage a quantum annealing-enhanced active learning scheme to automatically identify optimal designs of 130 nm-thick optical diodes. An optical diode is a stratified volume diffractive film discretized into rectangular pixels, where each pixel is assigned to either a metal or dielectric. The proposed scheme identifies the optimal material states of each pixel, maximizing the quality of optical isolation at given wavelengths. Consequently, we successfully identify optimal structures at three specific wavelengths (600, 800, and 1000 nm). In the best-case scenario, when the forward transmissivity is 85%, the backward transmissivity is 0.1%. Electromagnetic field profiles reveal that the designed diode strongly supports surface plasmons coupled across counterintuitive metal–dielectric pixel arrays. Thereby, it yields the transmission of first-order diffracted light with a high amplitude. In contrast, backward transmission has decoupled surface plasmons that redirect Poynting vectors back to the incident medium, resulting in near attenuation of its transmission. In addition, we experimentally verify the optical isolation function of the optical diode.</p></div>","PeriodicalId":712,"journal":{"name":"Nano Convergence","volume":"11 1","pages":""},"PeriodicalIF":13.4000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00425-6","citationCount":"0","resultStr":"{\"title\":\"Quantum annealing-aided design of an ultrathin-metamaterial optical diode\",\"authors\":\"Seongmin Kim,&nbsp;Su-Jin Park,&nbsp;Seunghyun Moon,&nbsp;Qiushi Zhang,&nbsp;Sanghyo Hwang,&nbsp;Sun-Kyung Kim,&nbsp;Tengfei Luo,&nbsp;Eungkyu Lee\",\"doi\":\"10.1186/s40580-024-00425-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thin-film optical diodes are important elements for miniaturizing photonic systems. However, the design of optical diodes relies on empirical and heuristic approaches. This poses a significant challenge for identifying optimal structural models of optical diodes at given wavelengths. Here, we leverage a quantum annealing-enhanced active learning scheme to automatically identify optimal designs of 130 nm-thick optical diodes. An optical diode is a stratified volume diffractive film discretized into rectangular pixels, where each pixel is assigned to either a metal or dielectric. The proposed scheme identifies the optimal material states of each pixel, maximizing the quality of optical isolation at given wavelengths. Consequently, we successfully identify optimal structures at three specific wavelengths (600, 800, and 1000 nm). In the best-case scenario, when the forward transmissivity is 85%, the backward transmissivity is 0.1%. Electromagnetic field profiles reveal that the designed diode strongly supports surface plasmons coupled across counterintuitive metal–dielectric pixel arrays. Thereby, it yields the transmission of first-order diffracted light with a high amplitude. In contrast, backward transmission has decoupled surface plasmons that redirect Poynting vectors back to the incident medium, resulting in near attenuation of its transmission. In addition, we experimentally verify the optical isolation function of the optical diode.</p></div>\",\"PeriodicalId\":712,\"journal\":{\"name\":\"Nano Convergence\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":13.4000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://nanoconvergencejournal.springeropen.com/counter/pdf/10.1186/s40580-024-00425-6\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Convergence\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40580-024-00425-6\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Convergence","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s40580-024-00425-6","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

薄膜光二极管是实现光子系统微型化的重要元件。然而,光学二极管的设计依赖于经验和启发式方法。这对确定特定波长光学二极管的最佳结构模型提出了巨大挑战。在此,我们利用量子退火增强型主动学习方案,自动识别 130 nm 厚光学二极管的最佳设计。光学二极管是一种分层体积衍射膜,被离散成矩形像素,每个像素被分配给金属或电介质。所提出的方案能确定每个像素的最佳材料状态,最大限度地提高特定波长下的光学隔离质量。因此,我们成功地确定了三种特定波长(600、800 和 1000 纳米)下的最佳结构。在最佳情况下,正向透射率为 85%,反向透射率为 0.1%。电磁场剖面图显示,所设计的二极管能在金属-电介质像素阵列间耦合表面等离子体,从而产生强大的支持力。因此,它能以高振幅传输一阶衍射光。与此相反,后向传输具有去耦表面等离子体,可将 Poynting 向量重定向回入射介质,导致其传输近乎衰减。此外,我们还通过实验验证了光学二极管的光隔离功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum annealing-aided design of an ultrathin-metamaterial optical diode

Thin-film optical diodes are important elements for miniaturizing photonic systems. However, the design of optical diodes relies on empirical and heuristic approaches. This poses a significant challenge for identifying optimal structural models of optical diodes at given wavelengths. Here, we leverage a quantum annealing-enhanced active learning scheme to automatically identify optimal designs of 130 nm-thick optical diodes. An optical diode is a stratified volume diffractive film discretized into rectangular pixels, where each pixel is assigned to either a metal or dielectric. The proposed scheme identifies the optimal material states of each pixel, maximizing the quality of optical isolation at given wavelengths. Consequently, we successfully identify optimal structures at three specific wavelengths (600, 800, and 1000 nm). In the best-case scenario, when the forward transmissivity is 85%, the backward transmissivity is 0.1%. Electromagnetic field profiles reveal that the designed diode strongly supports surface plasmons coupled across counterintuitive metal–dielectric pixel arrays. Thereby, it yields the transmission of first-order diffracted light with a high amplitude. In contrast, backward transmission has decoupled surface plasmons that redirect Poynting vectors back to the incident medium, resulting in near attenuation of its transmission. In addition, we experimentally verify the optical isolation function of the optical diode.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Convergence
Nano Convergence Engineering-General Engineering
CiteScore
15.90
自引率
2.60%
发文量
50
审稿时长
13 weeks
期刊介绍: Nano Convergence is an internationally recognized, peer-reviewed, and interdisciplinary journal designed to foster effective communication among scientists spanning diverse research areas closely aligned with nanoscience and nanotechnology. Dedicated to encouraging the convergence of technologies across the nano- to microscopic scale, the journal aims to unveil novel scientific domains and cultivate fresh research prospects. Operating on a single-blind peer-review system, Nano Convergence ensures transparency in the review process, with reviewers cognizant of authors' names and affiliations while maintaining anonymity in the feedback provided to authors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信