气泡上升:利用 CNN 跟踪平行板电解槽中氧气气泡的垂直速度

IF 3.6 2区 工程技术 Q1 MECHANICS
Jonas Görtz, Jakob Seiler, Andreas Jupke
{"title":"气泡上升:利用 CNN 跟踪平行板电解槽中氧气气泡的垂直速度","authors":"Jonas Görtz,&nbsp;Jakob Seiler,&nbsp;Andreas Jupke","doi":"10.1016/j.ijmultiphaseflow.2024.104849","DOIUrl":null,"url":null,"abstract":"<div><p>Bubble-induced convection governs the flow pattern inside parallel plate electrolyzers, independent of the superficial electrolyte velocity. At the electrode surface, gas bubbles nucleate, grow and detach, increasing the gas volume fraction and accelerating the electrolyte in the proximity of the electrode. This acceleration due to buoyancy-induced bubble velocity enhances the mixing and mass transport, impacting the local concentration and, hence, the electrochemical reaction. To study the velocity and size of electrogenerated gas bubbles, we present a particle tracking velocimetry method that enables the velocity measurement directly inside the bubble curtain of a membrane-separated, parallel plate electrolyzer. By decoupling the effect of the bubble size on the bubble velocity, we study the impact of different current densities and superficial velocities of the electrolytes on the vertical bubble velocity. Our results reveal the strong dependence of the bubble velocity on the total net volume of produced gas and the thereby linked acceleration of the electrolyte near the electrode. Under no net electrolyte flow conditions, the determined vertical bubble velocities inside the bubble curtain double to triple values of single bubble experiments and predictions by commonly used drag correlations. By applying forced convection, the measured vertical velocity of equally sized bubbles decreases and shifts towards the superficial electrolyte velocity. Additionally, the horizontal bubble velocities increase at higher electrolyte velocities, indicating a broadening of the bubble curtain, as also proposed by numerical studies. The presented findings improve the understanding of gas-liquid flows in electrolyzers and, thus, the efficiency of gas-evolving parallel-plate electrolyzers.</p></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0301932224001277/pdfft?md5=12627a83ace5f7b11ccff6c98b24e86f&pid=1-s2.0-S0301932224001277-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Bubble up: Tracking down the vertical velocity of oxygen bubbles in parallel plate electrolyzers using CNN\",\"authors\":\"Jonas Görtz,&nbsp;Jakob Seiler,&nbsp;Andreas Jupke\",\"doi\":\"10.1016/j.ijmultiphaseflow.2024.104849\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bubble-induced convection governs the flow pattern inside parallel plate electrolyzers, independent of the superficial electrolyte velocity. At the electrode surface, gas bubbles nucleate, grow and detach, increasing the gas volume fraction and accelerating the electrolyte in the proximity of the electrode. This acceleration due to buoyancy-induced bubble velocity enhances the mixing and mass transport, impacting the local concentration and, hence, the electrochemical reaction. To study the velocity and size of electrogenerated gas bubbles, we present a particle tracking velocimetry method that enables the velocity measurement directly inside the bubble curtain of a membrane-separated, parallel plate electrolyzer. By decoupling the effect of the bubble size on the bubble velocity, we study the impact of different current densities and superficial velocities of the electrolytes on the vertical bubble velocity. Our results reveal the strong dependence of the bubble velocity on the total net volume of produced gas and the thereby linked acceleration of the electrolyte near the electrode. Under no net electrolyte flow conditions, the determined vertical bubble velocities inside the bubble curtain double to triple values of single bubble experiments and predictions by commonly used drag correlations. By applying forced convection, the measured vertical velocity of equally sized bubbles decreases and shifts towards the superficial electrolyte velocity. Additionally, the horizontal bubble velocities increase at higher electrolyte velocities, indicating a broadening of the bubble curtain, as also proposed by numerical studies. The presented findings improve the understanding of gas-liquid flows in electrolyzers and, thus, the efficiency of gas-evolving parallel-plate electrolyzers.</p></div>\",\"PeriodicalId\":339,\"journal\":{\"name\":\"International Journal of Multiphase Flow\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0301932224001277/pdfft?md5=12627a83ace5f7b11ccff6c98b24e86f&pid=1-s2.0-S0301932224001277-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Multiphase Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301932224001277\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301932224001277","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

气泡诱导对流控制着平行板电解槽内的流动模式,与表面电解质速度无关。在电极表面,气泡成核、生长和脱落,增加了气体体积分数,并加速了电极附近的电解质。由浮力引起的气泡速度加速会加强混合和质量传输,影响局部浓度,从而影响电化学反应。为了研究电生气泡的速度和大小,我们提出了一种粒子跟踪测速方法,可以直接在膜分离平行板电解槽的气泡幕内测量速度。通过分离气泡大小对气泡速度的影响,我们研究了不同电流密度和电解质表面速度对垂直气泡速度的影响。研究结果表明,气泡速度与产生气体的总净体积以及电极附近电解质的加速度密切相关。在无电解质净流条件下,测定的气泡幕内垂直气泡速度是单气泡实验值和常用阻力相关性预测值的两倍到三倍。在强制对流条件下,测得的大小相等的气泡垂直速度降低,并向电解质表层速度移动。此外,在电解质速度较高时,水平气泡速度增加,表明气泡帘扩大,这也是数值研究提出的。这些研究结果加深了人们对电解槽中气液流动的理解,从而提高了气体演变平行板电解槽的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bubble up: Tracking down the vertical velocity of oxygen bubbles in parallel plate electrolyzers using CNN

Bubble up: Tracking down the vertical velocity of oxygen bubbles in parallel plate electrolyzers using CNN

Bubble-induced convection governs the flow pattern inside parallel plate electrolyzers, independent of the superficial electrolyte velocity. At the electrode surface, gas bubbles nucleate, grow and detach, increasing the gas volume fraction and accelerating the electrolyte in the proximity of the electrode. This acceleration due to buoyancy-induced bubble velocity enhances the mixing and mass transport, impacting the local concentration and, hence, the electrochemical reaction. To study the velocity and size of electrogenerated gas bubbles, we present a particle tracking velocimetry method that enables the velocity measurement directly inside the bubble curtain of a membrane-separated, parallel plate electrolyzer. By decoupling the effect of the bubble size on the bubble velocity, we study the impact of different current densities and superficial velocities of the electrolytes on the vertical bubble velocity. Our results reveal the strong dependence of the bubble velocity on the total net volume of produced gas and the thereby linked acceleration of the electrolyte near the electrode. Under no net electrolyte flow conditions, the determined vertical bubble velocities inside the bubble curtain double to triple values of single bubble experiments and predictions by commonly used drag correlations. By applying forced convection, the measured vertical velocity of equally sized bubbles decreases and shifts towards the superficial electrolyte velocity. Additionally, the horizontal bubble velocities increase at higher electrolyte velocities, indicating a broadening of the bubble curtain, as also proposed by numerical studies. The presented findings improve the understanding of gas-liquid flows in electrolyzers and, thus, the efficiency of gas-evolving parallel-plate electrolyzers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
10.50%
发文量
244
审稿时长
4 months
期刊介绍: The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others. The journal publishes full papers, brief communications and conference announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信