Renan Coghi Rogeri , Lucas Tadeu Fuess , Matheus Neves de Araujo , Felipe Eng , André do Vale Borges , Márcia Helena Rissato Zamariolli Damianovic , Ariovaldo José da Silva
{"title":"利用甘蔗渣生产甲烷:两级厌氧消化中发酵-硫化过程的碱化潜力","authors":"Renan Coghi Rogeri , Lucas Tadeu Fuess , Matheus Neves de Araujo , Felipe Eng , André do Vale Borges , Márcia Helena Rissato Zamariolli Damianovic , Ariovaldo José da Silva","doi":"10.1016/j.nexus.2024.100303","DOIUrl":null,"url":null,"abstract":"<div><p>The two-stage anaerobic digestion (2st-AD) of sugarcane vinasse is widely studied and well-known for improving the energy recovery potential in sugarcane biorefineries. Maintaining enhanced substrate acidification in a separate (first stage) reactor directly improves the performance of methanogenesis (second stage). However, problems derived from the presence of sulfate (SO<sub>4</sub><sup>2−</sup>) and the subsequent sulfide formation in the second stage are not prevented in conventional 2st-AD systems. In addition, high costs related to reactor alkalinization still represent significant drawbacks in that configuration. The energy recovery potential via methanogenesis was assessed from acidified sugarcane vinasse samples collected from different dark fermentative systems, namely: V1 (subjected to NaOH+NaHCO<sub>3</sub> dosing), V2 (subjected to NaOH dosing) and V3 (subjected to no pH control). Despite the harmfulness of sulfide, the enhanced production of acetate from the incomplete oxidation of organic matter in sulfidogenesis can benefit methanogens. The highest methane yield (296.3 NmL-CH<sub>4</sub> g-COD<sup>−1</sup>) and global energy recovery potential (354,603 GWh per season) were obtained from the lactate and SO<sub>4</sub><sup>2−</sup>rich vinasse (V2). Nevertheless, from a technological perspective, the methanogenesis of vinasses subjected to the fermentative-sulfidogenic process (V1) provided a higher quality biogas due to a higher calorific power (26.4-27.0 MJ Nm<sup>−3</sup>) and decreased H<sub>2</sub>S content in the biogas. Finally, the fermentative-sulfidogenic process as an alkalinizing strategy was demonstrated to be the best economic approach for scaling up the 2st-AD of sugarcane vinasse, overcoming the main economic drawback of this configuration.</p></div>","PeriodicalId":93548,"journal":{"name":"Energy nexus","volume":"14 ","pages":"Article 100303"},"PeriodicalIF":8.0000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772427124000342/pdfft?md5=9c3504195b438187c6a09084b3846ca9&pid=1-s2.0-S2772427124000342-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Methane production from sugarcane vinasse: The alkalinizing potential of fermentative-sulfidogenic processes in two-stage anaerobic digestion\",\"authors\":\"Renan Coghi Rogeri , Lucas Tadeu Fuess , Matheus Neves de Araujo , Felipe Eng , André do Vale Borges , Márcia Helena Rissato Zamariolli Damianovic , Ariovaldo José da Silva\",\"doi\":\"10.1016/j.nexus.2024.100303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The two-stage anaerobic digestion (2st-AD) of sugarcane vinasse is widely studied and well-known for improving the energy recovery potential in sugarcane biorefineries. Maintaining enhanced substrate acidification in a separate (first stage) reactor directly improves the performance of methanogenesis (second stage). However, problems derived from the presence of sulfate (SO<sub>4</sub><sup>2−</sup>) and the subsequent sulfide formation in the second stage are not prevented in conventional 2st-AD systems. In addition, high costs related to reactor alkalinization still represent significant drawbacks in that configuration. The energy recovery potential via methanogenesis was assessed from acidified sugarcane vinasse samples collected from different dark fermentative systems, namely: V1 (subjected to NaOH+NaHCO<sub>3</sub> dosing), V2 (subjected to NaOH dosing) and V3 (subjected to no pH control). Despite the harmfulness of sulfide, the enhanced production of acetate from the incomplete oxidation of organic matter in sulfidogenesis can benefit methanogens. The highest methane yield (296.3 NmL-CH<sub>4</sub> g-COD<sup>−1</sup>) and global energy recovery potential (354,603 GWh per season) were obtained from the lactate and SO<sub>4</sub><sup>2−</sup>rich vinasse (V2). Nevertheless, from a technological perspective, the methanogenesis of vinasses subjected to the fermentative-sulfidogenic process (V1) provided a higher quality biogas due to a higher calorific power (26.4-27.0 MJ Nm<sup>−3</sup>) and decreased H<sub>2</sub>S content in the biogas. Finally, the fermentative-sulfidogenic process as an alkalinizing strategy was demonstrated to be the best economic approach for scaling up the 2st-AD of sugarcane vinasse, overcoming the main economic drawback of this configuration.</p></div>\",\"PeriodicalId\":93548,\"journal\":{\"name\":\"Energy nexus\",\"volume\":\"14 \",\"pages\":\"Article 100303\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772427124000342/pdfft?md5=9c3504195b438187c6a09084b3846ca9&pid=1-s2.0-S2772427124000342-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy nexus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772427124000342\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy nexus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772427124000342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Methane production from sugarcane vinasse: The alkalinizing potential of fermentative-sulfidogenic processes in two-stage anaerobic digestion
The two-stage anaerobic digestion (2st-AD) of sugarcane vinasse is widely studied and well-known for improving the energy recovery potential in sugarcane biorefineries. Maintaining enhanced substrate acidification in a separate (first stage) reactor directly improves the performance of methanogenesis (second stage). However, problems derived from the presence of sulfate (SO42−) and the subsequent sulfide formation in the second stage are not prevented in conventional 2st-AD systems. In addition, high costs related to reactor alkalinization still represent significant drawbacks in that configuration. The energy recovery potential via methanogenesis was assessed from acidified sugarcane vinasse samples collected from different dark fermentative systems, namely: V1 (subjected to NaOH+NaHCO3 dosing), V2 (subjected to NaOH dosing) and V3 (subjected to no pH control). Despite the harmfulness of sulfide, the enhanced production of acetate from the incomplete oxidation of organic matter in sulfidogenesis can benefit methanogens. The highest methane yield (296.3 NmL-CH4 g-COD−1) and global energy recovery potential (354,603 GWh per season) were obtained from the lactate and SO42−rich vinasse (V2). Nevertheless, from a technological perspective, the methanogenesis of vinasses subjected to the fermentative-sulfidogenic process (V1) provided a higher quality biogas due to a higher calorific power (26.4-27.0 MJ Nm−3) and decreased H2S content in the biogas. Finally, the fermentative-sulfidogenic process as an alkalinizing strategy was demonstrated to be the best economic approach for scaling up the 2st-AD of sugarcane vinasse, overcoming the main economic drawback of this configuration.
Energy nexusEnergy (General), Ecological Modelling, Renewable Energy, Sustainability and the Environment, Water Science and Technology, Agricultural and Biological Sciences (General)