五阶非线性薛定谔方程中椭圆函数背景上的 W 形孤子、呼吸波和流氓波解决方案

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS
Fang-Cheng Fan , Wei-Kang Xie
{"title":"五阶非线性薛定谔方程中椭圆函数背景上的 W 形孤子、呼吸波和流氓波解决方案","authors":"Fang-Cheng Fan ,&nbsp;Wei-Kang Xie","doi":"10.1016/j.wavemoti.2024.103334","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate a fifth-order nonlinear Schrödinger equation, which can be applied to describe the propagation of ultrashort pulses in optical fibers. We provide the eigenfunctions of the Lax pair associated with the elliptic function seed solutions cn and dn. Using the Darboux transformation method, the W-shaped solitons, breathers, periodic solutions and rogue waves on the elliptic functions cn and dn background are obtained, the corresponding dynamical properties and evolutions are illustrated graphically by choosing proper parameters, the variations for amplitudes and periods of these solutions are analyzed. The relationship between parameters and solutions’ structures is discussed. To the best of our knowledge, the W-shaped solitons on the elliptic function background are presented for the first time. The results in this paper might be useful for us to understand some characteristics and relations of breathers and rogue waves on the elliptic functions cn and dn background in various physical equations with higher-order effects.</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"129 ","pages":"Article 103334"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"W-shaped soliton, breather and rogue wave solutions on the elliptic function background in a fifth-order nonlinear Schrödinger equation\",\"authors\":\"Fang-Cheng Fan ,&nbsp;Wei-Kang Xie\",\"doi\":\"10.1016/j.wavemoti.2024.103334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we investigate a fifth-order nonlinear Schrödinger equation, which can be applied to describe the propagation of ultrashort pulses in optical fibers. We provide the eigenfunctions of the Lax pair associated with the elliptic function seed solutions cn and dn. Using the Darboux transformation method, the W-shaped solitons, breathers, periodic solutions and rogue waves on the elliptic functions cn and dn background are obtained, the corresponding dynamical properties and evolutions are illustrated graphically by choosing proper parameters, the variations for amplitudes and periods of these solutions are analyzed. The relationship between parameters and solutions’ structures is discussed. To the best of our knowledge, the W-shaped solitons on the elliptic function background are presented for the first time. The results in this paper might be useful for us to understand some characteristics and relations of breathers and rogue waves on the elliptic functions cn and dn background in various physical equations with higher-order effects.</p></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":\"129 \",\"pages\":\"Article 103334\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212524000647\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524000647","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了五阶非线性薛定谔方程,该方程可用于描述超短脉冲在光纤中的传播。我们提供了与椭圆函数种子解 cn 和 dn 相关的 Lax 对的特征函数。利用达布变换方法,得到了椭圆函数 cn 和 dn 背景上的 W 形孤子、呼吸子、周期解和流氓波,并通过选择适当的参数,以图解的方式说明了相应的动力学性质和演变,分析了这些解的振幅和周期变化。讨论了参数与解的结构之间的关系。据我们所知,本文首次提出了椭圆函数背景上的 W 形孤子。本文的结果可能有助于我们理解各种物理方程中具有高阶效应的椭圆函数 cn 和 dn 背景上的呼吸波和流氓波的一些特征和关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
W-shaped soliton, breather and rogue wave solutions on the elliptic function background in a fifth-order nonlinear Schrödinger equation

In this paper, we investigate a fifth-order nonlinear Schrödinger equation, which can be applied to describe the propagation of ultrashort pulses in optical fibers. We provide the eigenfunctions of the Lax pair associated with the elliptic function seed solutions cn and dn. Using the Darboux transformation method, the W-shaped solitons, breathers, periodic solutions and rogue waves on the elliptic functions cn and dn background are obtained, the corresponding dynamical properties and evolutions are illustrated graphically by choosing proper parameters, the variations for amplitudes and periods of these solutions are analyzed. The relationship between parameters and solutions’ structures is discussed. To the best of our knowledge, the W-shaped solitons on the elliptic function background are presented for the first time. The results in this paper might be useful for us to understand some characteristics and relations of breathers and rogue waves on the elliptic functions cn and dn background in various physical equations with higher-order effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信