2022 年 8 月初韩国灾难性暴雨事件的多尺度驱动因素

IF 6.1 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Chanil Park , Min-Jee Kang , Jaeyoung Hwang , Hyeong-Oh Cho , Sujin Kim , Seok-Woo Son
{"title":"2022 年 8 月初韩国灾难性暴雨事件的多尺度驱动因素","authors":"Chanil Park ,&nbsp;Min-Jee Kang ,&nbsp;Jaeyoung Hwang ,&nbsp;Hyeong-Oh Cho ,&nbsp;Sujin Kim ,&nbsp;Seok-Woo Son","doi":"10.1016/j.wace.2024.100681","DOIUrl":null,"url":null,"abstract":"<div><p>On 8–11 August 2022, South Korea experienced a catastrophic heavy rainfall event (HRE) with 14 fatalities. To elucidate its driving mechanisms, the present study performs a multiscale analysis by hierarchically delineating the synoptic and large-scale characteristics of the HRE. Its synoptic condition was featured by the confrontation of the western North Pacific subtropical high and the continental cyclone in the north of the Korean Peninsula. At their interface, a tremendous amount of moisture was transported in an elongated shape (i.e., atmospheric river) along with strong frontogenetic activity. This provided a favorable environment for potential instability. The continental cyclone was maintained throughout the HRE period, while a transient cyclone was superposed contributing to more intense rainfall in the early stage of the HRE. This persistent cyclone in the north of the Korean Peninsula originated from a far-upstream-originated cutoff low that became a part of the quasi-stationary wave train along the Asian subtropical jet. A linear model experiment suggests that the quasi-stationary wave train was excited by the enhanced tropical convection related to the boreal summer intraseasonal oscillation. The anomalously strong subtropical jet also acted as an effective waveguide. These results suggest that the integration of synoptic and large-scale processes is essential to understand this unprecedented HRE.</p></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"44 ","pages":"Article 100681"},"PeriodicalIF":6.1000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212094724000422/pdfft?md5=514630bb090b0d9a5afff77233563d9d&pid=1-s2.0-S2212094724000422-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Multiscale drivers of catastrophic heavy rainfall event in early August 2022 in South Korea\",\"authors\":\"Chanil Park ,&nbsp;Min-Jee Kang ,&nbsp;Jaeyoung Hwang ,&nbsp;Hyeong-Oh Cho ,&nbsp;Sujin Kim ,&nbsp;Seok-Woo Son\",\"doi\":\"10.1016/j.wace.2024.100681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>On 8–11 August 2022, South Korea experienced a catastrophic heavy rainfall event (HRE) with 14 fatalities. To elucidate its driving mechanisms, the present study performs a multiscale analysis by hierarchically delineating the synoptic and large-scale characteristics of the HRE. Its synoptic condition was featured by the confrontation of the western North Pacific subtropical high and the continental cyclone in the north of the Korean Peninsula. At their interface, a tremendous amount of moisture was transported in an elongated shape (i.e., atmospheric river) along with strong frontogenetic activity. This provided a favorable environment for potential instability. The continental cyclone was maintained throughout the HRE period, while a transient cyclone was superposed contributing to more intense rainfall in the early stage of the HRE. This persistent cyclone in the north of the Korean Peninsula originated from a far-upstream-originated cutoff low that became a part of the quasi-stationary wave train along the Asian subtropical jet. A linear model experiment suggests that the quasi-stationary wave train was excited by the enhanced tropical convection related to the boreal summer intraseasonal oscillation. The anomalously strong subtropical jet also acted as an effective waveguide. These results suggest that the integration of synoptic and large-scale processes is essential to understand this unprecedented HRE.</p></div>\",\"PeriodicalId\":48630,\"journal\":{\"name\":\"Weather and Climate Extremes\",\"volume\":\"44 \",\"pages\":\"Article 100681\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212094724000422/pdfft?md5=514630bb090b0d9a5afff77233563d9d&pid=1-s2.0-S2212094724000422-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Weather and Climate Extremes\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212094724000422\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Climate Extremes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212094724000422","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

2022 年 8 月 8-11 日,韩国经历了一场灾难性的强降雨事件(HRE),造成 14 人死亡。为阐明其驱动机制,本研究通过分层划分 HRE 的同步和大尺度特征,进行了多尺度分析。它的天气特征是北太平洋西部副热带高压和朝鲜半岛北部大陆气旋的对峙。在它们的交汇处,大量水汽以拉长的形状(即大气河)输送,同时伴有强烈的锋面活动。这为潜在的不稳定性提供了有利环境。在整个 HRE 期间,大陆气旋一直维持着,而在 HRE 的早期阶段,一个瞬时气旋叠加造成了更强的降雨。朝鲜半岛北部的这一持续性气旋源于上游的一个切断低气压,该低气压成为沿亚洲副热带喷流的准静止波列的一部分。线性模式试验表明,准静止波列是由与北方夏季季内振荡有关的热带对流增强所激发的。异常强烈的副热带喷流也起到了有效的导波作用。这些结果表明,要理解这一前所未有的 HRE,必须综合考虑天气过程和大尺度过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiscale drivers of catastrophic heavy rainfall event in early August 2022 in South Korea

On 8–11 August 2022, South Korea experienced a catastrophic heavy rainfall event (HRE) with 14 fatalities. To elucidate its driving mechanisms, the present study performs a multiscale analysis by hierarchically delineating the synoptic and large-scale characteristics of the HRE. Its synoptic condition was featured by the confrontation of the western North Pacific subtropical high and the continental cyclone in the north of the Korean Peninsula. At their interface, a tremendous amount of moisture was transported in an elongated shape (i.e., atmospheric river) along with strong frontogenetic activity. This provided a favorable environment for potential instability. The continental cyclone was maintained throughout the HRE period, while a transient cyclone was superposed contributing to more intense rainfall in the early stage of the HRE. This persistent cyclone in the north of the Korean Peninsula originated from a far-upstream-originated cutoff low that became a part of the quasi-stationary wave train along the Asian subtropical jet. A linear model experiment suggests that the quasi-stationary wave train was excited by the enhanced tropical convection related to the boreal summer intraseasonal oscillation. The anomalously strong subtropical jet also acted as an effective waveguide. These results suggest that the integration of synoptic and large-scale processes is essential to understand this unprecedented HRE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Weather and Climate Extremes
Weather and Climate Extremes Earth and Planetary Sciences-Atmospheric Science
CiteScore
11.00
自引率
7.50%
发文量
102
审稿时长
33 weeks
期刊介绍: Weather and Climate Extremes Target Audience: Academics Decision makers International development agencies Non-governmental organizations (NGOs) Civil society Focus Areas: Research in weather and climate extremes Monitoring and early warning systems Assessment of vulnerability and impacts Developing and implementing intervention policies Effective risk management and adaptation practices Engagement of local communities in adopting coping strategies Information and communication strategies tailored to local and regional needs and circumstances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信