揭示植物生物活性途径:omics 数据利用和机器学习辅助

IF 7.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS
Mickael Durand , Sébastien Besseau , Nicolas Papon , Vincent Courdavault
{"title":"揭示植物生物活性途径:omics 数据利用和机器学习辅助","authors":"Mickael Durand ,&nbsp;Sébastien Besseau ,&nbsp;Nicolas Papon ,&nbsp;Vincent Courdavault","doi":"10.1016/j.copbio.2024.103135","DOIUrl":null,"url":null,"abstract":"<div><p>Plant bioactives hold immense potential in the medicine and food industry. The recent advancements in omics applied in deciphering specialized metabolic pathways underscore the importance of high-quality genome releases and the wealth of data in metabolomics and transcriptomics. While harnessing data, whether integrated or standalone, has proven successful in unveiling plant natural product (PNP) biosynthetic pathways, the democratization of machine learning in biology opens exciting new opportunities for enhancing the exploration of these pathways. This review highlights the recent breakthroughs in disrupting plant-specialized biosynthetic pathways through the utilization of omics data harnessing and machine learning techniques.</p></div>","PeriodicalId":10833,"journal":{"name":"Current opinion in biotechnology","volume":"87 ","pages":"Article 103135"},"PeriodicalIF":7.1000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0958166924000715/pdfft?md5=faeb460050cd7f736cb0e9555fd8e875&pid=1-s2.0-S0958166924000715-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Unlocking plant bioactive pathways: omics data harnessing and machine learning assisting\",\"authors\":\"Mickael Durand ,&nbsp;Sébastien Besseau ,&nbsp;Nicolas Papon ,&nbsp;Vincent Courdavault\",\"doi\":\"10.1016/j.copbio.2024.103135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plant bioactives hold immense potential in the medicine and food industry. The recent advancements in omics applied in deciphering specialized metabolic pathways underscore the importance of high-quality genome releases and the wealth of data in metabolomics and transcriptomics. While harnessing data, whether integrated or standalone, has proven successful in unveiling plant natural product (PNP) biosynthetic pathways, the democratization of machine learning in biology opens exciting new opportunities for enhancing the exploration of these pathways. This review highlights the recent breakthroughs in disrupting plant-specialized biosynthetic pathways through the utilization of omics data harnessing and machine learning techniques.</p></div>\",\"PeriodicalId\":10833,\"journal\":{\"name\":\"Current opinion in biotechnology\",\"volume\":\"87 \",\"pages\":\"Article 103135\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0958166924000715/pdfft?md5=faeb460050cd7f736cb0e9555fd8e875&pid=1-s2.0-S0958166924000715-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0958166924000715\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958166924000715","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

植物生物活性物质在医药和食品工业中蕴藏着巨大的潜力。最近,应用于破译特殊代谢途径的全息技术取得了进展,这凸显了高质量基因组发布以及代谢组学和转录组学中大量数据的重要性。事实证明,利用数据(无论是整合数据还是独立数据)成功地揭示了植物天然产物(PNP)的生物合成途径,而生物学中机器学习的民主化则为加强对这些途径的探索提供了令人兴奋的新机遇。本综述重点介绍了最近通过利用 omics 数据利用和机器学习技术,在破坏植物专业生物合成途径方面取得的突破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unlocking plant bioactive pathways: omics data harnessing and machine learning assisting

Unlocking plant bioactive pathways: omics data harnessing and machine learning assisting

Plant bioactives hold immense potential in the medicine and food industry. The recent advancements in omics applied in deciphering specialized metabolic pathways underscore the importance of high-quality genome releases and the wealth of data in metabolomics and transcriptomics. While harnessing data, whether integrated or standalone, has proven successful in unveiling plant natural product (PNP) biosynthetic pathways, the democratization of machine learning in biology opens exciting new opportunities for enhancing the exploration of these pathways. This review highlights the recent breakthroughs in disrupting plant-specialized biosynthetic pathways through the utilization of omics data harnessing and machine learning techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in biotechnology
Current opinion in biotechnology 工程技术-生化研究方法
CiteScore
16.20
自引率
2.60%
发文量
226
审稿时长
4-8 weeks
期刊介绍: Current Opinion in Biotechnology (COBIOT) is renowned for publishing authoritative, comprehensive, and systematic reviews. By offering clear and readable syntheses of current advances in biotechnology, COBIOT assists specialists in staying updated on the latest developments in the field. Expert authors annotate the most noteworthy papers from the vast array of information available today, providing readers with valuable insights and saving them time. As part of the Current Opinion and Research (CO+RE) suite of journals, COBIOT is accompanied by the open-access primary research journal, Current Research in Biotechnology (CRBIOT). Leveraging the editorial excellence, high impact, and global reach of the Current Opinion legacy, CO+RE journals ensure they are widely read resources integral to scientists' workflows. COBIOT is organized into themed sections, each reviewed once a year. These themes cover various areas of biotechnology, including analytical biotechnology, plant biotechnology, food biotechnology, energy biotechnology, environmental biotechnology, systems biology, nanobiotechnology, tissue, cell, and pathway engineering, chemical biotechnology, and pharmaceutical biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信