Abhishek Ghosh , Ali Elasheri , Nick Parson , X.-Grant Chen
{"title":"Al-Mg-Si-Zr-Mn 合金的热变形行为和加工图谱","authors":"Abhishek Ghosh , Ali Elasheri , Nick Parson , X.-Grant Chen","doi":"10.1016/j.jalmes.2024.100077","DOIUrl":null,"url":null,"abstract":"<div><p>Isothermal compression tests were executed on an Al-Mg-Si-Zr-Mn alloy using a Gleeble-3800 thermo-mechanical simulator at temperatures from 400 to 550 °C and strain rates ranging from 1 to 0.001 s⁻¹. By analyzing the flow curves and characterizing the deformed microstructure, this study aimed to gain insights into the hot deformation behavior and hot workability. Utilizing the hyperbolic-sine sinusoidal model, a constitutive equation was derived, revealing an activation energy of hot deformation of 274 kJ/mol. The processing maps were constructed utilizing the dynamic material model, which highlighted the secure range of hot working conditions between 480 to 550 °C and 0.01–0.001 s<sup>−1</sup>. The softening mechanism observed at relatively low deformation temperatures and high strain rates was primarily dynamic recovery, whereas the safe domain exhibited a combination of dynamically recovered (DRV) and recrystallized (DRX) grain structures. The results of the FEM simulation indicated a non-homogeneous distribution of stress and strain fields, with the highest effective values focused at the center of the sample. Furthermore, the FEM simulation unveiled a clear correlation between the evolution of DRV and DRX and the strain.</p></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"6 ","pages":"Article 100077"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949917824000245/pdfft?md5=a9f862020cf44d2541129a9c0a0321d8&pid=1-s2.0-S2949917824000245-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Hot deformation behavior and processing maps for an Al-Mg-Si-Zr-Mn alloy\",\"authors\":\"Abhishek Ghosh , Ali Elasheri , Nick Parson , X.-Grant Chen\",\"doi\":\"10.1016/j.jalmes.2024.100077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Isothermal compression tests were executed on an Al-Mg-Si-Zr-Mn alloy using a Gleeble-3800 thermo-mechanical simulator at temperatures from 400 to 550 °C and strain rates ranging from 1 to 0.001 s⁻¹. By analyzing the flow curves and characterizing the deformed microstructure, this study aimed to gain insights into the hot deformation behavior and hot workability. Utilizing the hyperbolic-sine sinusoidal model, a constitutive equation was derived, revealing an activation energy of hot deformation of 274 kJ/mol. The processing maps were constructed utilizing the dynamic material model, which highlighted the secure range of hot working conditions between 480 to 550 °C and 0.01–0.001 s<sup>−1</sup>. The softening mechanism observed at relatively low deformation temperatures and high strain rates was primarily dynamic recovery, whereas the safe domain exhibited a combination of dynamically recovered (DRV) and recrystallized (DRX) grain structures. The results of the FEM simulation indicated a non-homogeneous distribution of stress and strain fields, with the highest effective values focused at the center of the sample. Furthermore, the FEM simulation unveiled a clear correlation between the evolution of DRV and DRX and the strain.</p></div>\",\"PeriodicalId\":100753,\"journal\":{\"name\":\"Journal of Alloys and Metallurgical Systems\",\"volume\":\"6 \",\"pages\":\"Article 100077\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949917824000245/pdfft?md5=a9f862020cf44d2541129a9c0a0321d8&pid=1-s2.0-S2949917824000245-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Metallurgical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949917824000245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Metallurgical Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949917824000245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hot deformation behavior and processing maps for an Al-Mg-Si-Zr-Mn alloy
Isothermal compression tests were executed on an Al-Mg-Si-Zr-Mn alloy using a Gleeble-3800 thermo-mechanical simulator at temperatures from 400 to 550 °C and strain rates ranging from 1 to 0.001 s⁻¹. By analyzing the flow curves and characterizing the deformed microstructure, this study aimed to gain insights into the hot deformation behavior and hot workability. Utilizing the hyperbolic-sine sinusoidal model, a constitutive equation was derived, revealing an activation energy of hot deformation of 274 kJ/mol. The processing maps were constructed utilizing the dynamic material model, which highlighted the secure range of hot working conditions between 480 to 550 °C and 0.01–0.001 s−1. The softening mechanism observed at relatively low deformation temperatures and high strain rates was primarily dynamic recovery, whereas the safe domain exhibited a combination of dynamically recovered (DRV) and recrystallized (DRX) grain structures. The results of the FEM simulation indicated a non-homogeneous distribution of stress and strain fields, with the highest effective values focused at the center of the sample. Furthermore, the FEM simulation unveiled a clear correlation between the evolution of DRV and DRX and the strain.