{"title":"线性网络时空点过程的汇总统计","authors":"Mehdi Moradi, Ali Sharifi","doi":"10.1016/j.spasta.2024.100840","DOIUrl":null,"url":null,"abstract":"<div><p>We propose novel second/higher-order summary statistics for inhomogeneous spatio-temporal point processes when the spatial locations are limited to a linear network. More specifically, letting the spatial distance between events be measured by a regular distance metric, appropriate forms of <span><math><mi>K</mi></math></span>- and <span><math><mi>J</mi></math></span>-functions are introduced, and their theoretical relationships are studied. The theoretical forms of our proposed summary statistics are investigated under homogeneity, Poissonness, and independent thinning. Moreover, non-parametric estimators are derived, facilitating the use of our proposed summary statistics to study the spatio-temporal dependence between events. Through simulation studies, we demonstrate that our proposed <span><math><mi>J</mi></math></span>-function effectively identifies spatio-temporal clustering, inhibition, and randomness. Finally, we examine spatio-temporal dependencies for street crimes in Valencia, Spain, and traffic accidents in New York, USA.</p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211675324000319/pdfft?md5=345d0dcd771c5b3d1a2f681cc0522723&pid=1-s2.0-S2211675324000319-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Summary statistics for spatio-temporal point processes on linear networks\",\"authors\":\"Mehdi Moradi, Ali Sharifi\",\"doi\":\"10.1016/j.spasta.2024.100840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose novel second/higher-order summary statistics for inhomogeneous spatio-temporal point processes when the spatial locations are limited to a linear network. More specifically, letting the spatial distance between events be measured by a regular distance metric, appropriate forms of <span><math><mi>K</mi></math></span>- and <span><math><mi>J</mi></math></span>-functions are introduced, and their theoretical relationships are studied. The theoretical forms of our proposed summary statistics are investigated under homogeneity, Poissonness, and independent thinning. Moreover, non-parametric estimators are derived, facilitating the use of our proposed summary statistics to study the spatio-temporal dependence between events. Through simulation studies, we demonstrate that our proposed <span><math><mi>J</mi></math></span>-function effectively identifies spatio-temporal clustering, inhibition, and randomness. Finally, we examine spatio-temporal dependencies for street crimes in Valencia, Spain, and traffic accidents in New York, USA.</p></div>\",\"PeriodicalId\":48771,\"journal\":{\"name\":\"Spatial Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2211675324000319/pdfft?md5=345d0dcd771c5b3d1a2f681cc0522723&pid=1-s2.0-S2211675324000319-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211675324000319\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675324000319","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
当空间位置局限于线性网络时,我们为非均质时空点过程提出了新的二阶/高阶汇总统计量。更具体地说,让事件之间的空间距离用常规距离度量来测量,引入适当形式的 K 函数和 J 函数,并研究它们之间的理论关系。在同质性、泊松性和独立稀疏性条件下,研究了我们提出的汇总统计的理论形式。此外,我们还推导出了非参数估计器,便于使用我们提出的汇总统计量来研究事件之间的时空依赖性。通过模拟研究,我们证明了我们提出的 J 函数能有效识别时空聚类、抑制和随机性。最后,我们研究了西班牙巴伦西亚街头犯罪和美国纽约交通事故的时空依赖性。
Summary statistics for spatio-temporal point processes on linear networks
We propose novel second/higher-order summary statistics for inhomogeneous spatio-temporal point processes when the spatial locations are limited to a linear network. More specifically, letting the spatial distance between events be measured by a regular distance metric, appropriate forms of - and -functions are introduced, and their theoretical relationships are studied. The theoretical forms of our proposed summary statistics are investigated under homogeneity, Poissonness, and independent thinning. Moreover, non-parametric estimators are derived, facilitating the use of our proposed summary statistics to study the spatio-temporal dependence between events. Through simulation studies, we demonstrate that our proposed -function effectively identifies spatio-temporal clustering, inhibition, and randomness. Finally, we examine spatio-temporal dependencies for street crimes in Valencia, Spain, and traffic accidents in New York, USA.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.