Xiaoya Zhou , Shouyang He , Yingzeng Yang , Pan Wu , Wei Luo
{"title":"中国西南部受城市化影响的岩溶地下河系统的水化学指纹","authors":"Xiaoya Zhou , Shouyang He , Yingzeng Yang , Pan Wu , Wei Luo","doi":"10.1016/j.jconhyd.2024.104356","DOIUrl":null,"url":null,"abstract":"<div><p>Karst groundwater plays an irreplaceable role in the formation and development of urban areas, and land-use and land-cover change (LUCC) and the input of pollutants during the urbanization process would pose potential environmental risks to underground rivers. We analysed the relationship between urbanization processes and underground river hydrochemistry over nearly 35 years in Guiyang city, southwest of China, it was found that concentrations of various cations and anions, as well as total dissolved solids (TDS), gradually increased with the urbanization process, with significant fluctuations during the rapid urbanization periods. The Hydrochemical Facies Evolution Diagram (HFE<img>D) clearly showed the influence of urbanization on the hydrochemistry of the underground rivers. The ion ratios of γMg<sup>2+</sup>/γCa<sup>2+</sup>—γHCO<sub>3</sub><sup>−</sup>, γNa<sup>+</sup>/γCl<sup>−</sup>, Ca<sup>2+</sup>/Mg<sup>2+</sup>—Ca<sup>2+</sup> or Mg<sup>2+</sup>/Σ cations, HCO<sub>3</sub><sup>−</sup>/SO<sub>4</sub><sup>2−</sup>—HCO<sub>3</sub><sup>−</sup> or SO<sub>4</sub><sup>2−</sup>/Σ anions revealed two distinct phases in the hydrochemical evolution of the underground river system, highly consistent with the urbanization process. Before the rapid urbanization, acid deposition and agricultural activities affected the hydrochemistry, with HCO<sub>3</sub>-Ca·Mg and HCO<sub>3</sub>·SO<sub>4</sub>-Ca·Mg as the dominant types controlled by limestone and dolomite dissolution in water-rock interactions. As acid deposition diminished, the input of SO<sub>4</sub><sup>2−</sup> from urban sewage compensated for the reduced impact, but the increased impermeable surfaces reduced the infiltration of atmospheric precipitation, leading to a reduced dissolution of dolomite minerals in water-rock interactions, resulting in a decrease in Mg<sup>2+</sup> and a change in the hydrochemical type. The hydrochemical type evolved from a single HCO<sub>3</sub>·SO<sub>4</sub>-Ca·Mg type and HCO<sub>3</sub>-Ca·Mg type to multiple types, such as HCO<sub>3</sub>·Cl-Ca, HCO<sub>3</sub>·SO<sub>4</sub>-Ca, HCO<sub>3</sub>-Ca, and HCO<sub>3</sub>·SO<sub>4</sub>-Ca·Mg, and was highly unstable. With changes in land use, the proportions of various cations and anions in the hydrochemistry changed, especially NH<sub>4</sub><sup>+</sup>, NO<sub>3</sub><sup>−</sup>, SO<sub>4</sub><sup>2−</sup>, Na<sup>+</sup>, and Cl<sup>−</sup>, which were more sensitive to human activities. This study indicated the impact of urbanization on the hydrochemistry of the underground river system, with the input of SO<sub>4</sub><sup>2−</sup> from human activities and the increase in paved surfaces due to urbanization collectively altering the hydrochemical types of the underground river system. The rapid response of karst underground river system hydrochemistry indicates a potential impact on groundwater system by urbanization that should not be ignored.</p></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"264 ","pages":"Article 104356"},"PeriodicalIF":3.5000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrochemical fingerprints of karst underground river systems impacted by urbanization in Guiyang, Southwest China\",\"authors\":\"Xiaoya Zhou , Shouyang He , Yingzeng Yang , Pan Wu , Wei Luo\",\"doi\":\"10.1016/j.jconhyd.2024.104356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Karst groundwater plays an irreplaceable role in the formation and development of urban areas, and land-use and land-cover change (LUCC) and the input of pollutants during the urbanization process would pose potential environmental risks to underground rivers. We analysed the relationship between urbanization processes and underground river hydrochemistry over nearly 35 years in Guiyang city, southwest of China, it was found that concentrations of various cations and anions, as well as total dissolved solids (TDS), gradually increased with the urbanization process, with significant fluctuations during the rapid urbanization periods. The Hydrochemical Facies Evolution Diagram (HFE<img>D) clearly showed the influence of urbanization on the hydrochemistry of the underground rivers. The ion ratios of γMg<sup>2+</sup>/γCa<sup>2+</sup>—γHCO<sub>3</sub><sup>−</sup>, γNa<sup>+</sup>/γCl<sup>−</sup>, Ca<sup>2+</sup>/Mg<sup>2+</sup>—Ca<sup>2+</sup> or Mg<sup>2+</sup>/Σ cations, HCO<sub>3</sub><sup>−</sup>/SO<sub>4</sub><sup>2−</sup>—HCO<sub>3</sub><sup>−</sup> or SO<sub>4</sub><sup>2−</sup>/Σ anions revealed two distinct phases in the hydrochemical evolution of the underground river system, highly consistent with the urbanization process. Before the rapid urbanization, acid deposition and agricultural activities affected the hydrochemistry, with HCO<sub>3</sub>-Ca·Mg and HCO<sub>3</sub>·SO<sub>4</sub>-Ca·Mg as the dominant types controlled by limestone and dolomite dissolution in water-rock interactions. As acid deposition diminished, the input of SO<sub>4</sub><sup>2−</sup> from urban sewage compensated for the reduced impact, but the increased impermeable surfaces reduced the infiltration of atmospheric precipitation, leading to a reduced dissolution of dolomite minerals in water-rock interactions, resulting in a decrease in Mg<sup>2+</sup> and a change in the hydrochemical type. The hydrochemical type evolved from a single HCO<sub>3</sub>·SO<sub>4</sub>-Ca·Mg type and HCO<sub>3</sub>-Ca·Mg type to multiple types, such as HCO<sub>3</sub>·Cl-Ca, HCO<sub>3</sub>·SO<sub>4</sub>-Ca, HCO<sub>3</sub>-Ca, and HCO<sub>3</sub>·SO<sub>4</sub>-Ca·Mg, and was highly unstable. With changes in land use, the proportions of various cations and anions in the hydrochemistry changed, especially NH<sub>4</sub><sup>+</sup>, NO<sub>3</sub><sup>−</sup>, SO<sub>4</sub><sup>2−</sup>, Na<sup>+</sup>, and Cl<sup>−</sup>, which were more sensitive to human activities. This study indicated the impact of urbanization on the hydrochemistry of the underground river system, with the input of SO<sub>4</sub><sup>2−</sup> from human activities and the increase in paved surfaces due to urbanization collectively altering the hydrochemical types of the underground river system. The rapid response of karst underground river system hydrochemistry indicates a potential impact on groundwater system by urbanization that should not be ignored.</p></div>\",\"PeriodicalId\":15530,\"journal\":{\"name\":\"Journal of contaminant hydrology\",\"volume\":\"264 \",\"pages\":\"Article 104356\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of contaminant hydrology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169772224000603\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772224000603","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Hydrochemical fingerprints of karst underground river systems impacted by urbanization in Guiyang, Southwest China
Karst groundwater plays an irreplaceable role in the formation and development of urban areas, and land-use and land-cover change (LUCC) and the input of pollutants during the urbanization process would pose potential environmental risks to underground rivers. We analysed the relationship between urbanization processes and underground river hydrochemistry over nearly 35 years in Guiyang city, southwest of China, it was found that concentrations of various cations and anions, as well as total dissolved solids (TDS), gradually increased with the urbanization process, with significant fluctuations during the rapid urbanization periods. The Hydrochemical Facies Evolution Diagram (HFED) clearly showed the influence of urbanization on the hydrochemistry of the underground rivers. The ion ratios of γMg2+/γCa2+—γHCO3−, γNa+/γCl−, Ca2+/Mg2+—Ca2+ or Mg2+/Σ cations, HCO3−/SO42−—HCO3− or SO42−/Σ anions revealed two distinct phases in the hydrochemical evolution of the underground river system, highly consistent with the urbanization process. Before the rapid urbanization, acid deposition and agricultural activities affected the hydrochemistry, with HCO3-Ca·Mg and HCO3·SO4-Ca·Mg as the dominant types controlled by limestone and dolomite dissolution in water-rock interactions. As acid deposition diminished, the input of SO42− from urban sewage compensated for the reduced impact, but the increased impermeable surfaces reduced the infiltration of atmospheric precipitation, leading to a reduced dissolution of dolomite minerals in water-rock interactions, resulting in a decrease in Mg2+ and a change in the hydrochemical type. The hydrochemical type evolved from a single HCO3·SO4-Ca·Mg type and HCO3-Ca·Mg type to multiple types, such as HCO3·Cl-Ca, HCO3·SO4-Ca, HCO3-Ca, and HCO3·SO4-Ca·Mg, and was highly unstable. With changes in land use, the proportions of various cations and anions in the hydrochemistry changed, especially NH4+, NO3−, SO42−, Na+, and Cl−, which were more sensitive to human activities. This study indicated the impact of urbanization on the hydrochemistry of the underground river system, with the input of SO42− from human activities and the increase in paved surfaces due to urbanization collectively altering the hydrochemical types of the underground river system. The rapid response of karst underground river system hydrochemistry indicates a potential impact on groundwater system by urbanization that should not be ignored.
期刊介绍:
The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide).
The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.