Abigail Rogers, Namrata Jaiswal, Emily Roggenkamp, Hye-Seon Kim, Joshua S MacCready, Martin I Chilvers, Steven R Scofield, Anjali S Iyer-Pascuzzi, Matthew Helm
{"title":"玉米焦油斑病原 Phyllachora maydis 毒力蛋白的基因组信息营养分类和功能特征。","authors":"Abigail Rogers, Namrata Jaiswal, Emily Roggenkamp, Hye-Seon Kim, Joshua S MacCready, Martin I Chilvers, Steven R Scofield, Anjali S Iyer-Pascuzzi, Matthew Helm","doi":"10.1094/PHYTO-01-24-0037-R","DOIUrl":null,"url":null,"abstract":"<p><p><i>Phyllachora maydis</i> is an ascomycete foliar fungal pathogen and the causal agent of tar spot in maize. Although <i>P. maydis</i> is considered an economically important foliar pathogen of maize, our general knowledge of the trophic lifestyle and functional role of effector proteins from this fungal pathogen remains limited. Here, we utilized a genome-informed approach to predict the trophic lifestyle of <i>P. maydis</i> and functionally characterized a subset of candidate effectors from this fungal pathogen. Leveraging the most recent <i>P. maydis</i> genome annotation and the CATAStrophy pipeline, we show that this fungal pathogen encodes a predicted carbohydrate-active enzymes (CAZymes) repertoire consistent with that of biotrophs. To investigate fungal pathogenicity, we selected 18 candidate effector proteins that were previously shown to be expressed during primary disease development. We assessed whether these putative effectors share predicted structural similarity with other characterized fungal effectors and determined whether any suppress plant immune responses. Using AlphaFold2 and Foldseek, we showed that one candidate effector, PM02_g1115, adopts a predicted protein structure similar to that of an effector from <i>Verticillium dahlia</i>. Furthermore, transient expression of candidate effector-fluorescent protein fusions in <i>Nicotiana benthamiana</i> revealed two putative effectors, PM02_g378 and PM02_g2610, accumulated predominantly in the cytosol, and three candidate effectors, PM02_g1115, PM02_g7882, and PM02_g8240, consistently attenuated chitin-mediated reactive oxygen species production. Collectively, the results presented herein provide insights into the predicted trophic lifestyle and putative functions of effectors from <i>P. maydis</i> and will likely stimulate continued research to elucidate the molecular mechanisms used by <i>P. maydis</i> to induce tar spot.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"1940-1949"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-Informed Trophic Classification and Functional Characterization of Virulence Proteins from the Maize Tar Spot Pathogen <i>Phyllachora maydis</i>.\",\"authors\":\"Abigail Rogers, Namrata Jaiswal, Emily Roggenkamp, Hye-Seon Kim, Joshua S MacCready, Martin I Chilvers, Steven R Scofield, Anjali S Iyer-Pascuzzi, Matthew Helm\",\"doi\":\"10.1094/PHYTO-01-24-0037-R\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Phyllachora maydis</i> is an ascomycete foliar fungal pathogen and the causal agent of tar spot in maize. Although <i>P. maydis</i> is considered an economically important foliar pathogen of maize, our general knowledge of the trophic lifestyle and functional role of effector proteins from this fungal pathogen remains limited. Here, we utilized a genome-informed approach to predict the trophic lifestyle of <i>P. maydis</i> and functionally characterized a subset of candidate effectors from this fungal pathogen. Leveraging the most recent <i>P. maydis</i> genome annotation and the CATAStrophy pipeline, we show that this fungal pathogen encodes a predicted carbohydrate-active enzymes (CAZymes) repertoire consistent with that of biotrophs. To investigate fungal pathogenicity, we selected 18 candidate effector proteins that were previously shown to be expressed during primary disease development. We assessed whether these putative effectors share predicted structural similarity with other characterized fungal effectors and determined whether any suppress plant immune responses. Using AlphaFold2 and Foldseek, we showed that one candidate effector, PM02_g1115, adopts a predicted protein structure similar to that of an effector from <i>Verticillium dahlia</i>. Furthermore, transient expression of candidate effector-fluorescent protein fusions in <i>Nicotiana benthamiana</i> revealed two putative effectors, PM02_g378 and PM02_g2610, accumulated predominantly in the cytosol, and three candidate effectors, PM02_g1115, PM02_g7882, and PM02_g8240, consistently attenuated chitin-mediated reactive oxygen species production. Collectively, the results presented herein provide insights into the predicted trophic lifestyle and putative functions of effectors from <i>P. maydis</i> and will likely stimulate continued research to elucidate the molecular mechanisms used by <i>P. maydis</i> to induce tar spot.</p>\",\"PeriodicalId\":20410,\"journal\":{\"name\":\"Phytopathology\",\"volume\":\" \",\"pages\":\"1940-1949\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytopathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1094/PHYTO-01-24-0037-R\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-01-24-0037-R","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Genome-Informed Trophic Classification and Functional Characterization of Virulence Proteins from the Maize Tar Spot Pathogen Phyllachora maydis.
Phyllachora maydis is an ascomycete foliar fungal pathogen and the causal agent of tar spot in maize. Although P. maydis is considered an economically important foliar pathogen of maize, our general knowledge of the trophic lifestyle and functional role of effector proteins from this fungal pathogen remains limited. Here, we utilized a genome-informed approach to predict the trophic lifestyle of P. maydis and functionally characterized a subset of candidate effectors from this fungal pathogen. Leveraging the most recent P. maydis genome annotation and the CATAStrophy pipeline, we show that this fungal pathogen encodes a predicted carbohydrate-active enzymes (CAZymes) repertoire consistent with that of biotrophs. To investigate fungal pathogenicity, we selected 18 candidate effector proteins that were previously shown to be expressed during primary disease development. We assessed whether these putative effectors share predicted structural similarity with other characterized fungal effectors and determined whether any suppress plant immune responses. Using AlphaFold2 and Foldseek, we showed that one candidate effector, PM02_g1115, adopts a predicted protein structure similar to that of an effector from Verticillium dahlia. Furthermore, transient expression of candidate effector-fluorescent protein fusions in Nicotiana benthamiana revealed two putative effectors, PM02_g378 and PM02_g2610, accumulated predominantly in the cytosol, and three candidate effectors, PM02_g1115, PM02_g7882, and PM02_g8240, consistently attenuated chitin-mediated reactive oxygen species production. Collectively, the results presented herein provide insights into the predicted trophic lifestyle and putative functions of effectors from P. maydis and will likely stimulate continued research to elucidate the molecular mechanisms used by P. maydis to induce tar spot.
期刊介绍:
Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.