果蝇三阴性乳腺癌模型拷贝数改变的功能探索。

IF 4 3区 医学 Q2 CELL BIOLOGY
Disease Models & Mechanisms Pub Date : 2024-07-01 Epub Date: 2024-07-03 DOI:10.1242/dmm.050191
Jennifer E L Diaz, Vanessa Barcessat, Christian Bahamon, Chana Hecht, Tirtha K Das, Ross L Cagan
{"title":"果蝇三阴性乳腺癌模型拷贝数改变的功能探索。","authors":"Jennifer E L Diaz, Vanessa Barcessat, Christian Bahamon, Chana Hecht, Tirtha K Das, Ross L Cagan","doi":"10.1242/dmm.050191","DOIUrl":null,"url":null,"abstract":"<p><p>Accounting for 10-20% of breast cancer cases, triple-negative breast cancer (TNBC) is associated with a disproportionate number of breast cancer deaths. One challenge in studying TNBC is its genomic profile: with the exception of TP53 loss, most breast cancer tumors are characterized by a high number of copy number alterations (CNAs), making modeling the disease in whole animals challenging. We computationally analyzed 186 CNA regions previously identified in breast cancer tumors to rank genes within each region by likelihood of acting as a tumor driver. We then used a Drosophila p53-Myc TNBC model to identify 48 genes as functional drivers. To demonstrate the utility of this functional database, we established six 3-hit models; altering candidate genes led to increased aspects of transformation as well as resistance to the chemotherapeutic drug fluorouracil. Our work provides a functional database of CNA-associated TNBC drivers, and a template for an integrated computational/whole-animal approach to identify functional drivers of transformation and drug resistance within CNAs in other tumor types.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247506/pdf/","citationCount":"0","resultStr":"{\"title\":\"Functional exploration of copy number alterations in a Drosophila model of triple-negative breast cancer.\",\"authors\":\"Jennifer E L Diaz, Vanessa Barcessat, Christian Bahamon, Chana Hecht, Tirtha K Das, Ross L Cagan\",\"doi\":\"10.1242/dmm.050191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accounting for 10-20% of breast cancer cases, triple-negative breast cancer (TNBC) is associated with a disproportionate number of breast cancer deaths. One challenge in studying TNBC is its genomic profile: with the exception of TP53 loss, most breast cancer tumors are characterized by a high number of copy number alterations (CNAs), making modeling the disease in whole animals challenging. We computationally analyzed 186 CNA regions previously identified in breast cancer tumors to rank genes within each region by likelihood of acting as a tumor driver. We then used a Drosophila p53-Myc TNBC model to identify 48 genes as functional drivers. To demonstrate the utility of this functional database, we established six 3-hit models; altering candidate genes led to increased aspects of transformation as well as resistance to the chemotherapeutic drug fluorouracil. Our work provides a functional database of CNA-associated TNBC drivers, and a template for an integrated computational/whole-animal approach to identify functional drivers of transformation and drug resistance within CNAs in other tumor types.</p>\",\"PeriodicalId\":11144,\"journal\":{\"name\":\"Disease Models & Mechanisms\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247506/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Disease Models & Mechanisms\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1242/dmm.050191\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Disease Models & Mechanisms","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1242/dmm.050191","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

TNBC占乳腺癌病例的10-20%,与过多的乳腺癌死亡有关。研究 TNBC 所面临的一个挑战是其基因组特征:除 TP53 缺失外,大多数病例的特征是拷贝数改变(CNA),这使得在整只动物中模拟这种疾病具有挑战性。我们通过计算分析了之前在乳腺癌中发现的 186 个 CNA 区域,并根据作为肿瘤驱动因子的可能性对每个区域内的基因进行了排序。然后,我们利用果蝇 p53-Myc TNBC 模型鉴定出 48 个功能性驱动基因。为了证明这个功能数据库的实用性,我们建立了六个3-hit模型;改变候选基因会导致肿瘤转化以及对化疗药物氟尿嘧啶的耐药性增加。我们的工作提供了一个与CNA相关的TNBC驱动基因功能数据库,并为综合计算/全动物方法提供了一个模板,以确定其他肿瘤类型CNA内转化和耐药性的功能驱动基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional exploration of copy number alterations in a Drosophila model of triple-negative breast cancer.

Accounting for 10-20% of breast cancer cases, triple-negative breast cancer (TNBC) is associated with a disproportionate number of breast cancer deaths. One challenge in studying TNBC is its genomic profile: with the exception of TP53 loss, most breast cancer tumors are characterized by a high number of copy number alterations (CNAs), making modeling the disease in whole animals challenging. We computationally analyzed 186 CNA regions previously identified in breast cancer tumors to rank genes within each region by likelihood of acting as a tumor driver. We then used a Drosophila p53-Myc TNBC model to identify 48 genes as functional drivers. To demonstrate the utility of this functional database, we established six 3-hit models; altering candidate genes led to increased aspects of transformation as well as resistance to the chemotherapeutic drug fluorouracil. Our work provides a functional database of CNA-associated TNBC drivers, and a template for an integrated computational/whole-animal approach to identify functional drivers of transformation and drug resistance within CNAs in other tumor types.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Disease Models & Mechanisms
Disease Models & Mechanisms 医学-病理学
CiteScore
6.60
自引率
7.00%
发文量
203
审稿时长
6-12 weeks
期刊介绍: Disease Models & Mechanisms (DMM) is an online Open Access journal focusing on the use of model systems to better understand, diagnose and treat human disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信