来自单项式-笛卡尔码及其子域-子码的最优 $$(r,\delta )$$ -LRCs

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
C. Galindo, F. Hernando, H. Martín-Cruz
{"title":"来自单项式-笛卡尔码及其子域-子码的最优 $$(r,\\delta )$$ -LRCs","authors":"C. Galindo, F. Hernando, H. Martín-Cruz","doi":"10.1007/s10623-024-01403-z","DOIUrl":null,"url":null,"abstract":"<p>We study monomial-Cartesian codes (MCCs) which can be regarded as <span>\\((r,\\delta )\\)</span>-locally recoverable codes (LRCs). These codes come with a natural bound for their minimum distance and we determine those giving rise to <span>\\((r,\\delta )\\)</span>-optimal LRCs for that distance, which are in fact <span>\\((r,\\delta )\\)</span>-optimal. A large subfamily of MCCs admits subfield-subcodes with the same parameters of certain optimal MCCs but over smaller supporting fields. This fact allows us to determine infinitely many sets of new <span>\\((r,\\delta )\\)</span>-optimal LRCs and their parameters.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal $$(r,\\\\delta )$$ -LRCs from monomial-Cartesian codes and their subfield-subcodes\",\"authors\":\"C. Galindo, F. Hernando, H. Martín-Cruz\",\"doi\":\"10.1007/s10623-024-01403-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study monomial-Cartesian codes (MCCs) which can be regarded as <span>\\\\((r,\\\\delta )\\\\)</span>-locally recoverable codes (LRCs). These codes come with a natural bound for their minimum distance and we determine those giving rise to <span>\\\\((r,\\\\delta )\\\\)</span>-optimal LRCs for that distance, which are in fact <span>\\\\((r,\\\\delta )\\\\)</span>-optimal. A large subfamily of MCCs admits subfield-subcodes with the same parameters of certain optimal MCCs but over smaller supporting fields. This fact allows us to determine infinitely many sets of new <span>\\\\((r,\\\\delta )\\\\)</span>-optimal LRCs and their parameters.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10623-024-01403-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01403-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的单项式笛卡尔码(MCCs)可被视为((r,\delta )\)-本地可恢复码(LRCs)。这些编码对它们的最小距离有一个自然的约束,我们确定了那些在这个距离上产生\((r,\delta )\)-最优LRC的编码,它们实际上是\((r,\delta )\)-最优的。MCC的一个大的子族允许在较小的支持域上具有与某些最优MCC相同的参数的子域子码。这一事实允许我们确定无限多组新的((r,\delta ))最优 LRC 及其参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimal $$(r,\delta )$$ -LRCs from monomial-Cartesian codes and their subfield-subcodes

Optimal $$(r,\delta )$$ -LRCs from monomial-Cartesian codes and their subfield-subcodes

We study monomial-Cartesian codes (MCCs) which can be regarded as \((r,\delta )\)-locally recoverable codes (LRCs). These codes come with a natural bound for their minimum distance and we determine those giving rise to \((r,\delta )\)-optimal LRCs for that distance, which are in fact \((r,\delta )\)-optimal. A large subfamily of MCCs admits subfield-subcodes with the same parameters of certain optimal MCCs but over smaller supporting fields. This fact allows us to determine infinitely many sets of new \((r,\delta )\)-optimal LRCs and their parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信