Roslyn Massey, Xiaoyu Song, Shiva Ashoori, Jingwen Guan, Ravi Prakash
{"title":"利用生物兼容共聚物栅极电介质开发可持续的直接印刷有机晶体管","authors":"Roslyn Massey, Xiaoyu Song, Shiva Ashoori, Jingwen Guan, Ravi Prakash","doi":"10.1002/cjce.25298","DOIUrl":null,"url":null,"abstract":"<p>We have investigated the potential of three dielectric materials to meet the future demands of green dielectrics: Polycaprolactone (PCL) thermoplastic, polyvinyl alcohol (PVA)-carrageenan (CAR) crosslinked biopolymer, and boron nitride nanotubes (BNNTs) as a nano additive in PVA. Metal–insulator–metal (MIM) capacitors and organic thin film transistors (OTFT) were built with bilayer dielectric stacks of PVA-CAR, PVA-PCL, and PVA-BNNT materials to examine their electrical properties. The PVA-CAR layer uses a cyclic freeze thaw process to crosslink PVA and CAR for superior mechanical and electrical properties to either material alone. The PVA-CAR MIM capacitors showed a dielectric constant of 23, which was found to be consistent with the extracted OTFT gate dielectric characteristics. Of the OTFT devices tested, PVA-CAR OTFT showed highest device currents at low applied biases and produced an ON/OFF ratio of 10<sup>4</sup>–10<sup>5</sup>, both values were highest amongst the tested gate dielectrics. This material is therefore extremely promising for green electronics. The PVA-PCL OTFT had very low leakage current and beneficial hydrophilic properties with comparable electrical properties to the commonly used organic material polytetrafluoroethylene. PVA-BNNT MIM capacitors showed a low dielectric constant of 0.7, and the high resistivity makes this a promising material for shielding or substrates in high frequency applications. All three materials have the potential to fulfil different niches in a sustainable electronics future.</p>","PeriodicalId":9400,"journal":{"name":"Canadian Journal of Chemical Engineering","volume":"102 12","pages":"4152-4165"},"PeriodicalIF":1.6000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjce.25298","citationCount":"0","resultStr":"{\"title\":\"Towards sustainable, direct printed, organic transistors with biocompatible copolymer gate dielectrics\",\"authors\":\"Roslyn Massey, Xiaoyu Song, Shiva Ashoori, Jingwen Guan, Ravi Prakash\",\"doi\":\"10.1002/cjce.25298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We have investigated the potential of three dielectric materials to meet the future demands of green dielectrics: Polycaprolactone (PCL) thermoplastic, polyvinyl alcohol (PVA)-carrageenan (CAR) crosslinked biopolymer, and boron nitride nanotubes (BNNTs) as a nano additive in PVA. Metal–insulator–metal (MIM) capacitors and organic thin film transistors (OTFT) were built with bilayer dielectric stacks of PVA-CAR, PVA-PCL, and PVA-BNNT materials to examine their electrical properties. The PVA-CAR layer uses a cyclic freeze thaw process to crosslink PVA and CAR for superior mechanical and electrical properties to either material alone. The PVA-CAR MIM capacitors showed a dielectric constant of 23, which was found to be consistent with the extracted OTFT gate dielectric characteristics. Of the OTFT devices tested, PVA-CAR OTFT showed highest device currents at low applied biases and produced an ON/OFF ratio of 10<sup>4</sup>–10<sup>5</sup>, both values were highest amongst the tested gate dielectrics. This material is therefore extremely promising for green electronics. The PVA-PCL OTFT had very low leakage current and beneficial hydrophilic properties with comparable electrical properties to the commonly used organic material polytetrafluoroethylene. PVA-BNNT MIM capacitors showed a low dielectric constant of 0.7, and the high resistivity makes this a promising material for shielding or substrates in high frequency applications. All three materials have the potential to fulfil different niches in a sustainable electronics future.</p>\",\"PeriodicalId\":9400,\"journal\":{\"name\":\"Canadian Journal of Chemical Engineering\",\"volume\":\"102 12\",\"pages\":\"4152-4165\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjce.25298\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjce.25298\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjce.25298","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Towards sustainable, direct printed, organic transistors with biocompatible copolymer gate dielectrics
We have investigated the potential of three dielectric materials to meet the future demands of green dielectrics: Polycaprolactone (PCL) thermoplastic, polyvinyl alcohol (PVA)-carrageenan (CAR) crosslinked biopolymer, and boron nitride nanotubes (BNNTs) as a nano additive in PVA. Metal–insulator–metal (MIM) capacitors and organic thin film transistors (OTFT) were built with bilayer dielectric stacks of PVA-CAR, PVA-PCL, and PVA-BNNT materials to examine their electrical properties. The PVA-CAR layer uses a cyclic freeze thaw process to crosslink PVA and CAR for superior mechanical and electrical properties to either material alone. The PVA-CAR MIM capacitors showed a dielectric constant of 23, which was found to be consistent with the extracted OTFT gate dielectric characteristics. Of the OTFT devices tested, PVA-CAR OTFT showed highest device currents at low applied biases and produced an ON/OFF ratio of 104–105, both values were highest amongst the tested gate dielectrics. This material is therefore extremely promising for green electronics. The PVA-PCL OTFT had very low leakage current and beneficial hydrophilic properties with comparable electrical properties to the commonly used organic material polytetrafluoroethylene. PVA-BNNT MIM capacitors showed a low dielectric constant of 0.7, and the high resistivity makes this a promising material for shielding or substrates in high frequency applications. All three materials have the potential to fulfil different niches in a sustainable electronics future.
期刊介绍:
The Canadian Journal of Chemical Engineering (CJChE) publishes original research articles, new theoretical interpretation or experimental findings and critical reviews in the science or industrial practice of chemical and biochemical processes. Preference is given to papers having a clearly indicated scope and applicability in any of the following areas: Fluid mechanics, heat and mass transfer, multiphase flows, separations processes, thermodynamics, process systems engineering, reactors and reaction kinetics, catalysis, interfacial phenomena, electrochemical phenomena, bioengineering, minerals processing and natural products and environmental and energy engineering. Papers that merely describe or present a conventional or routine analysis of existing processes will not be considered.