研究从 MTVZA-GYa 测量中恢复降水强度的可能性

IF 0.9 4区 地球科学 Q4 METEOROLOGY & ATMOSPHERIC SCIENCES
D. S. Sazonov
{"title":"研究从 MTVZA-GYa 测量中恢复降水强度的可能性","authors":"D. S. Sazonov","doi":"10.1134/s0001433823120204","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this paper, an algorithm for restoring the precipitation intensity over the ocean surface according to data from the MTVZA-GYa Russian microwave sounder is presented. The developed algorithm is based on the ALG’85 regression model in which the precipitation intensity is estimated using the scattering index on a high-frequency radiometric channel (~90 GHz). In this work, the scattering index is simulated based on MTVZA-GYa data and compared with GPM IMERG reanalysis data. To restore the precipitation intensity, it is proposed to use a fourth-degree polynomial. The quantitative estimates show that the RMS spread reaches 50%, and the correlation coefficient does not exceed 0.75. The qualitative comparison indicates a significant difference between the restored rain rate and the GPM IMERG data, as well as the presence of a shift of the precipitation area. As a result of the analysis, it is concluded that the incorrect convergence of the beams of the radiation patterns for different frequency channels of the MTVZA-GYa device might be one of the causes.</p>","PeriodicalId":54911,"journal":{"name":"Izvestiya Atmospheric and Oceanic Physics","volume":"26 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Studying the Possibility of Precipitation Intensity Recovery from MTVZA-GYa Measurements\",\"authors\":\"D. S. Sazonov\",\"doi\":\"10.1134/s0001433823120204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>In this paper, an algorithm for restoring the precipitation intensity over the ocean surface according to data from the MTVZA-GYa Russian microwave sounder is presented. The developed algorithm is based on the ALG’85 regression model in which the precipitation intensity is estimated using the scattering index on a high-frequency radiometric channel (~90 GHz). In this work, the scattering index is simulated based on MTVZA-GYa data and compared with GPM IMERG reanalysis data. To restore the precipitation intensity, it is proposed to use a fourth-degree polynomial. The quantitative estimates show that the RMS spread reaches 50%, and the correlation coefficient does not exceed 0.75. The qualitative comparison indicates a significant difference between the restored rain rate and the GPM IMERG data, as well as the presence of a shift of the precipitation area. As a result of the analysis, it is concluded that the incorrect convergence of the beams of the radiation patterns for different frequency channels of the MTVZA-GYa device might be one of the causes.</p>\",\"PeriodicalId\":54911,\"journal\":{\"name\":\"Izvestiya Atmospheric and Oceanic Physics\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Atmospheric and Oceanic Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1134/s0001433823120204\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Atmospheric and Oceanic Physics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1134/s0001433823120204","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文介绍了根据俄罗斯微波探测仪 MTVZA-GYa 的数据还原海洋表面降水强度的算法。所开发的算法基于 ALG'85 回归模型,在该模型中,降水强度是利用高频辐射测量通道(约 90 GHz)上的散射指数估算的。在这项工作中,根据 MTVZA-GYa 数据模拟了散射指数,并与 GPM IMERG 再分析数据进行了比较。为了还原降水强度,建议使用四度多项式。定量估计结果表明,均方根差达到 50%,相关系数不超过 0.75。定性比较表明,恢复后的雨量与 GPM IMERG 数据之间存在显著差异,降水区域也出现了偏移。分析结果表明,MTVZA-GYa 设备不同频率信道的辐射模式波束收敛不正确可能是原因之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Studying the Possibility of Precipitation Intensity Recovery from MTVZA-GYa Measurements

Studying the Possibility of Precipitation Intensity Recovery from MTVZA-GYa Measurements

Abstract

In this paper, an algorithm for restoring the precipitation intensity over the ocean surface according to data from the MTVZA-GYa Russian microwave sounder is presented. The developed algorithm is based on the ALG’85 regression model in which the precipitation intensity is estimated using the scattering index on a high-frequency radiometric channel (~90 GHz). In this work, the scattering index is simulated based on MTVZA-GYa data and compared with GPM IMERG reanalysis data. To restore the precipitation intensity, it is proposed to use a fourth-degree polynomial. The quantitative estimates show that the RMS spread reaches 50%, and the correlation coefficient does not exceed 0.75. The qualitative comparison indicates a significant difference between the restored rain rate and the GPM IMERG data, as well as the presence of a shift of the precipitation area. As a result of the analysis, it is concluded that the incorrect convergence of the beams of the radiation patterns for different frequency channels of the MTVZA-GYa device might be one of the causes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
28.60%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Izvestiya, Atmospheric and Oceanic Physics is a journal that publishes original scientific research and review articles on vital issues in the physics of the Earth’s atmosphere and hydrosphere and climate theory. The journal presents results of recent studies of physical processes in the atmosphere and ocean that control climate, weather, and their changes. These studies have possible practical applications. The journal also gives room to the discussion of results obtained in theoretical and experimental studies in various fields of oceanic and atmospheric physics, such as the dynamics of gas and water media, interaction of the atmosphere with the ocean and land surfaces, turbulence theory, heat balance and radiation processes, remote sensing and optics of both media, natural and man-induced climate changes, and the state of the atmosphere and ocean. The journal publishes papers on research techniques used in both media, current scientific information on domestic and foreign events in the physics of the atmosphere and ocean.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信