流域反应潜能:预测上游尺度溶质命运和迁移的框架

IF 8.9 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Kenneth Swift Bird*, Alexis Navarre-Sitchler and Kamini Singha, 
{"title":"流域反应潜能:预测上游尺度溶质命运和迁移的框架","authors":"Kenneth Swift Bird*,&nbsp;Alexis Navarre-Sitchler and Kamini Singha,&nbsp;","doi":"10.1021/acs.estlett.4c00035","DOIUrl":null,"url":null,"abstract":"<p >We develop a new framework, hyporheic reaction potential (HRP), to predict the influence of oxidation-reduction reactions on metal fate and transport in streams using data from tracer studies and geochemical sampling. HRP, with energy flux units [KJ m<sup>–2</sup> s<sup>–1</sup>], is a metric calculated from both the physical and chemical properties of the hyporheic zone. We apply the HRP framework for iron reactions, using existing geochemical and geophysical data from two metal-impacted alpine streams at high and low flow. In these two systems, HRP delineates contrasting controls on iron fate and transport with biogeochemical controls in Mineral Creek and physical controls in Cement Creek. In both systems, HRP scales with discharge and hyporheic-zone extent as flows change seasonally, which demonstrates the ability of HRP to capture physical aspects of chemical reactions in the hyporheic zone. This paper provides a foundation on which HRP can be expanded to other solutes where chemical gradients in the hyporheic zone control reaction networks, making it broadly applicable to redox cycling in stream systems. This framework is useful in quantifying the role of the hyporheic zone in sourcing and storing metal(loid)s under varying hydrologic conditions with implications for water quality, mine remediation, and regional watershed management.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"11 6","pages":"586–590"},"PeriodicalIF":8.9000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acs.estlett.4c00035","citationCount":"0","resultStr":"{\"title\":\"Hyporheic Reaction Potential: A Framework for Predicting Reach Scale Solute Fate and Transport\",\"authors\":\"Kenneth Swift Bird*,&nbsp;Alexis Navarre-Sitchler and Kamini Singha,&nbsp;\",\"doi\":\"10.1021/acs.estlett.4c00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We develop a new framework, hyporheic reaction potential (HRP), to predict the influence of oxidation-reduction reactions on metal fate and transport in streams using data from tracer studies and geochemical sampling. HRP, with energy flux units [KJ m<sup>–2</sup> s<sup>–1</sup>], is a metric calculated from both the physical and chemical properties of the hyporheic zone. We apply the HRP framework for iron reactions, using existing geochemical and geophysical data from two metal-impacted alpine streams at high and low flow. In these two systems, HRP delineates contrasting controls on iron fate and transport with biogeochemical controls in Mineral Creek and physical controls in Cement Creek. In both systems, HRP scales with discharge and hyporheic-zone extent as flows change seasonally, which demonstrates the ability of HRP to capture physical aspects of chemical reactions in the hyporheic zone. This paper provides a foundation on which HRP can be expanded to other solutes where chemical gradients in the hyporheic zone control reaction networks, making it broadly applicable to redox cycling in stream systems. This framework is useful in quantifying the role of the hyporheic zone in sourcing and storing metal(loid)s under varying hydrologic conditions with implications for water quality, mine remediation, and regional watershed management.</p>\",\"PeriodicalId\":37,\"journal\":{\"name\":\"Environmental Science & Technology Letters Environ.\",\"volume\":\"11 6\",\"pages\":\"586–590\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acs.estlett.4c00035\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Science & Technology Letters Environ.\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.estlett.4c00035\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science & Technology Letters Environ.","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.estlett.4c00035","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

我们利用示踪研究和地球化学取样的数据,开发了一个新的框架--散流反应潜能(HRP),用于预测氧化还原反应对溪流中金属归宿和迁移的影响。HRP 的能量通量单位为[KJ m-2 s-1],是根据透水层的物理和化学特性计算得出的指标。我们利用两条受金属影响的高山溪流在高流量和低流量时的现有地球化学和地球物理数据,将 HRP 框架应用于铁反应。在这两个系统中,HRP 对铁的归宿和迁移的控制形成了鲜明对比,矿物溪的控制是生物地球化学控制,而水泥溪的控制是物理控制。在这两个系统中,随着流量的季节性变化,HRP 随排水量和底流区范围的变化而变化,这表明 HRP 能够捕捉底流区化学反应的物理方面。本文提供了一个基础,在此基础上,HRP 可以扩展到其他溶质,在这些溶质中,蓄水层中的化学梯度控制着反应网络,从而使其广泛适用于溪流系统中的氧化还原循环。该框架有助于量化在不同水文条件下,水下带在金属(loid)来源和储存方面的作用,对水质、矿山修复和区域流域管理具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hyporheic Reaction Potential: A Framework for Predicting Reach Scale Solute Fate and Transport

Hyporheic Reaction Potential: A Framework for Predicting Reach Scale Solute Fate and Transport

Hyporheic Reaction Potential: A Framework for Predicting Reach Scale Solute Fate and Transport

We develop a new framework, hyporheic reaction potential (HRP), to predict the influence of oxidation-reduction reactions on metal fate and transport in streams using data from tracer studies and geochemical sampling. HRP, with energy flux units [KJ m–2 s–1], is a metric calculated from both the physical and chemical properties of the hyporheic zone. We apply the HRP framework for iron reactions, using existing geochemical and geophysical data from two metal-impacted alpine streams at high and low flow. In these two systems, HRP delineates contrasting controls on iron fate and transport with biogeochemical controls in Mineral Creek and physical controls in Cement Creek. In both systems, HRP scales with discharge and hyporheic-zone extent as flows change seasonally, which demonstrates the ability of HRP to capture physical aspects of chemical reactions in the hyporheic zone. This paper provides a foundation on which HRP can be expanded to other solutes where chemical gradients in the hyporheic zone control reaction networks, making it broadly applicable to redox cycling in stream systems. This framework is useful in quantifying the role of the hyporheic zone in sourcing and storing metal(loid)s under varying hydrologic conditions with implications for water quality, mine remediation, and regional watershed management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Science & Technology Letters Environ.
Environmental Science & Technology Letters Environ. ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
17.90
自引率
3.70%
发文量
163
期刊介绍: Environmental Science & Technology Letters serves as an international forum for brief communications on experimental or theoretical results of exceptional timeliness in all aspects of environmental science, both pure and applied. Published as soon as accepted, these communications are summarized in monthly issues. Additionally, the journal features short reviews on emerging topics in environmental science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信