涉及非自相似尺度的抛物线算子基本解的同质化

IF 1 3区 数学 Q1 MATHEMATICS
Qing Meng, Weisheng Niu
{"title":"涉及非自相似尺度的抛物线算子基本解的同质化","authors":"Qing Meng,&nbsp;Weisheng Niu","doi":"10.1007/s10231-024-01446-y","DOIUrl":null,"url":null,"abstract":"<div><p>We establish the asymptotic expansion of the fundamental solutions with precise error estimates for second-order parabolic operators </p><div><div><span>$$\\begin{aligned} \\partial _t -\\text {div}(A(x/\\varepsilon , t/\\varepsilon ^\\ell )\\nabla ), \\quad \\, 0&lt;\\varepsilon&lt;1,\\, 0&lt;\\ell &lt;\\infty ,\\end{aligned}$$</span></div></div><p>in the case <span>\\(\\ell \\ne 2,\\)</span> where the spatial and temporal variables oscillate on non-self-similar scales and do not homogenize simultaneously. To achieve the goal, we explore the direct quantitative two-scale expansions for the aforementioned operators, which should be of some independent interests in quantitative homogenization of parabolic operators involving multiple scales. In the self-similar case <span>\\(\\ell =2\\)</span>, similar results have been obtained in Geng and Shen (Anal PDE 13(1): 147–170, 2020).</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homogenization of fundamental solutions for parabolic operators involving non-self-similar scales\",\"authors\":\"Qing Meng,&nbsp;Weisheng Niu\",\"doi\":\"10.1007/s10231-024-01446-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We establish the asymptotic expansion of the fundamental solutions with precise error estimates for second-order parabolic operators </p><div><div><span>$$\\\\begin{aligned} \\\\partial _t -\\\\text {div}(A(x/\\\\varepsilon , t/\\\\varepsilon ^\\\\ell )\\\\nabla ), \\\\quad \\\\, 0&lt;\\\\varepsilon&lt;1,\\\\, 0&lt;\\\\ell &lt;\\\\infty ,\\\\end{aligned}$$</span></div></div><p>in the case <span>\\\\(\\\\ell \\\\ne 2,\\\\)</span> where the spatial and temporal variables oscillate on non-self-similar scales and do not homogenize simultaneously. To achieve the goal, we explore the direct quantitative two-scale expansions for the aforementioned operators, which should be of some independent interests in quantitative homogenization of parabolic operators involving multiple scales. In the self-similar case <span>\\\\(\\\\ell =2\\\\)</span>, similar results have been obtained in Geng and Shen (Anal PDE 13(1): 147–170, 2020).</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-024-01446-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01446-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们为二阶抛物线算子$$\begin{aligned}建立了具有精确误差估计的基本解的渐近展开。\partial _t -text {div}(A(x/\varepsilon , t/\varepsilon ^\ell )\nabla ), \quad \, 0<\varepsilon<1,\, 0<\ell <;\(\ell\ne2,\)的情况下,空间变量和时间变量在非自相似尺度上振荡,并不同时同质化。为了实现这一目标,我们探索了上述算子的直接定量双尺度展开,这在涉及多尺度抛物线算子的定量同质化中应该具有一定的独立意义。在自相似情况下(ell =2),Geng 和 Shen (Anal PDE 13(1):147-170, 2020).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homogenization of fundamental solutions for parabolic operators involving non-self-similar scales

We establish the asymptotic expansion of the fundamental solutions with precise error estimates for second-order parabolic operators

$$\begin{aligned} \partial _t -\text {div}(A(x/\varepsilon , t/\varepsilon ^\ell )\nabla ), \quad \, 0<\varepsilon<1,\, 0<\ell <\infty ,\end{aligned}$$

in the case \(\ell \ne 2,\) where the spatial and temporal variables oscillate on non-self-similar scales and do not homogenize simultaneously. To achieve the goal, we explore the direct quantitative two-scale expansions for the aforementioned operators, which should be of some independent interests in quantitative homogenization of parabolic operators involving multiple scales. In the self-similar case \(\ell =2\), similar results have been obtained in Geng and Shen (Anal PDE 13(1): 147–170, 2020).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信