双分类器自适应:通过自适应伪标签学习实现无源 UDA

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yunyun Wang, Qinghao Li, Ziyi Hua
{"title":"双分类器自适应:通过自适应伪标签学习实现无源 UDA","authors":"Yunyun Wang, Qinghao Li, Ziyi Hua","doi":"10.1007/s11063-024-11627-8","DOIUrl":null,"url":null,"abstract":"<p>Different from Unsupervised Domain Adaptation (UDA), Source-Free Unsupervised Domain Adaptation (SFUDA) transfers source knowledge to target domain without accessing the source data, using only the source model, has attracted much attention recently. One mainstream SFUDA method fine-tunes the source model by self-training to generate pseudo-labels of the target data. However, due to the significant differences between different domains, these target pseudo-labels often contain some noise, and it will inevitably degenerates the target performance. For this purpose, we propose an innovative SFUDA method with adaptive pseudo-labels learning named Dual Classifier Adaptation (DCA). In DCA, a dual classifier structure is introduced to adaptively learn target pseudo-labels by cooperation between source and target classifiers. Simultaneously, the minimax entropy is introduced for target learning, in order to adapt target data to source model, while capture the intrinsic cluster structure in target domain as well. After compared our proposed method DCA with a range of UDA and SFUDA methods, DCA achieves far ahead performance on several benchmark datasets.</p>","PeriodicalId":51144,"journal":{"name":"Neural Processing Letters","volume":"13 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual Classifier Adaptation: Source-Free UDA via Adaptive Pseudo-Labels Learning\",\"authors\":\"Yunyun Wang, Qinghao Li, Ziyi Hua\",\"doi\":\"10.1007/s11063-024-11627-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Different from Unsupervised Domain Adaptation (UDA), Source-Free Unsupervised Domain Adaptation (SFUDA) transfers source knowledge to target domain without accessing the source data, using only the source model, has attracted much attention recently. One mainstream SFUDA method fine-tunes the source model by self-training to generate pseudo-labels of the target data. However, due to the significant differences between different domains, these target pseudo-labels often contain some noise, and it will inevitably degenerates the target performance. For this purpose, we propose an innovative SFUDA method with adaptive pseudo-labels learning named Dual Classifier Adaptation (DCA). In DCA, a dual classifier structure is introduced to adaptively learn target pseudo-labels by cooperation between source and target classifiers. Simultaneously, the minimax entropy is introduced for target learning, in order to adapt target data to source model, while capture the intrinsic cluster structure in target domain as well. After compared our proposed method DCA with a range of UDA and SFUDA methods, DCA achieves far ahead performance on several benchmark datasets.</p>\",\"PeriodicalId\":51144,\"journal\":{\"name\":\"Neural Processing Letters\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Processing Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11063-024-11627-8\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Processing Letters","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11063-024-11627-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

与无监督领域适配(UDA)不同,无源无监督领域适配(SFUDA)是在不访问源数据的情况下,仅使用源模型将源知识转移到目标领域。一种主流的 SFUDA 方法是通过自我训练对源模型进行微调,从而生成目标数据的伪标签。然而,由于不同领域之间存在显著差异,这些目标伪标签往往包含一些噪声,这将不可避免地降低目标性能。为此,我们提出了一种具有自适应伪标签学习功能的创新 SFUDA 方法,名为双分类器自适应(DCA)。在 DCA 中,我们引入了双分类器结构,通过源分类器和目标分类器之间的合作来自适应地学习目标伪标签。同时,在目标学习中引入了最小熵,以便使目标数据适应源模型,同时捕捉目标领域的内在聚类结构。将我们提出的 DCA 方法与一系列 UDA 和 SFUDA 方法进行比较后,发现 DCA 在几个基准数据集上的性能遥遥领先。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dual Classifier Adaptation: Source-Free UDA via Adaptive Pseudo-Labels Learning

Dual Classifier Adaptation: Source-Free UDA via Adaptive Pseudo-Labels Learning

Different from Unsupervised Domain Adaptation (UDA), Source-Free Unsupervised Domain Adaptation (SFUDA) transfers source knowledge to target domain without accessing the source data, using only the source model, has attracted much attention recently. One mainstream SFUDA method fine-tunes the source model by self-training to generate pseudo-labels of the target data. However, due to the significant differences between different domains, these target pseudo-labels often contain some noise, and it will inevitably degenerates the target performance. For this purpose, we propose an innovative SFUDA method with adaptive pseudo-labels learning named Dual Classifier Adaptation (DCA). In DCA, a dual classifier structure is introduced to adaptively learn target pseudo-labels by cooperation between source and target classifiers. Simultaneously, the minimax entropy is introduced for target learning, in order to adapt target data to source model, while capture the intrinsic cluster structure in target domain as well. After compared our proposed method DCA with a range of UDA and SFUDA methods, DCA achieves far ahead performance on several benchmark datasets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Processing Letters
Neural Processing Letters 工程技术-计算机:人工智能
CiteScore
4.90
自引率
12.90%
发文量
392
审稿时长
2.8 months
期刊介绍: Neural Processing Letters is an international journal publishing research results and innovative ideas on all aspects of artificial neural networks. Coverage includes theoretical developments, biological models, new formal modes, learning, applications, software and hardware developments, and prospective researches. The journal promotes fast exchange of information in the community of neural network researchers and users. The resurgence of interest in the field of artificial neural networks since the beginning of the 1980s is coupled to tremendous research activity in specialized or multidisciplinary groups. Research, however, is not possible without good communication between people and the exchange of information, especially in a field covering such different areas; fast communication is also a key aspect, and this is the reason for Neural Processing Letters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信