具有检疫和标准发病率的流行病模型的均匀持续性新分析方法

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Song-bai Guo, Yu-ling Xue, Xi-liang Li, Zuo-huan Zheng
{"title":"具有检疫和标准发病率的流行病模型的均匀持续性新分析方法","authors":"Song-bai Guo,&nbsp;Yu-ling Xue,&nbsp;Xi-liang Li,&nbsp;Zuo-huan Zheng","doi":"10.1007/s10255-023-1078-y","DOIUrl":null,"url":null,"abstract":"<div><p>Inspired by the transmission characteristics of the Coronavirus disease 2019 (COVID-19), an epidemic model with quarantine and standard incidence rate is first developed, then a novel analysis approach is proposed for finding the ultimate lower bound of the number of infected individuals, which means that the epidemic is uniformly persistent if the control reproduction number <span>\\({{\\cal R}_c} &gt; 1\\)</span>. This approach can be applied to the related biomathematical models, and some existing works can be improved by using that. In addition, the infection-free equilibrium <i>V</i><sup>0</sup> of the model is locally asymptotically stable (LAS) if <span>\\({{\\cal R}_c} &lt; 1\\)</span> and linearly stable if <span>\\({{\\cal R}_c} = 1\\)</span>; while <i>V</i><sup>0</sup> is unstable if <span>\\({{\\cal R}_c} &gt; 1\\)</span>.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 3","pages":"695 - 707"},"PeriodicalIF":0.9000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Analysis Approach of Uniform Persistence for an Epidemic Model with Quarantine and Standard Incidence Rate\",\"authors\":\"Song-bai Guo,&nbsp;Yu-ling Xue,&nbsp;Xi-liang Li,&nbsp;Zuo-huan Zheng\",\"doi\":\"10.1007/s10255-023-1078-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Inspired by the transmission characteristics of the Coronavirus disease 2019 (COVID-19), an epidemic model with quarantine and standard incidence rate is first developed, then a novel analysis approach is proposed for finding the ultimate lower bound of the number of infected individuals, which means that the epidemic is uniformly persistent if the control reproduction number <span>\\\\({{\\\\cal R}_c} &gt; 1\\\\)</span>. This approach can be applied to the related biomathematical models, and some existing works can be improved by using that. In addition, the infection-free equilibrium <i>V</i><sup>0</sup> of the model is locally asymptotically stable (LAS) if <span>\\\\({{\\\\cal R}_c} &lt; 1\\\\)</span> and linearly stable if <span>\\\\({{\\\\cal R}_c} = 1\\\\)</span>; while <i>V</i><sup>0</sup> is unstable if <span>\\\\({{\\\\cal R}_c} &gt; 1\\\\)</span>.</p></div>\",\"PeriodicalId\":6951,\"journal\":{\"name\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"volume\":\"40 3\",\"pages\":\"695 - 707\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematicae Applicatae Sinica, English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10255-023-1078-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-023-1078-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

受冠状病毒病2019(COVID-19)传播特性的启发,首先建立了一个具有检疫和标准发病率的流行病模型,然后提出了一种新的分析方法来寻找感染个体数量的最终下限,即如果控制繁殖数为({{\cal R}_c} >1\),则流行病是均匀持续的。这种方法可以应用到相关的生物数学模型中,现有的一些著作也可以利用这种方法加以改进。此外,如果 \({{\cal R}_c} < 1\) ,模型的无感染均衡 V0 是局部渐近稳定的;如果 \({{\cal R}_c} = 1\) ,V0 是线性稳定的;而如果 \({{\cal R}_c} > 1\) ,V0 是不稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Analysis Approach of Uniform Persistence for an Epidemic Model with Quarantine and Standard Incidence Rate

Inspired by the transmission characteristics of the Coronavirus disease 2019 (COVID-19), an epidemic model with quarantine and standard incidence rate is first developed, then a novel analysis approach is proposed for finding the ultimate lower bound of the number of infected individuals, which means that the epidemic is uniformly persistent if the control reproduction number \({{\cal R}_c} > 1\). This approach can be applied to the related biomathematical models, and some existing works can be improved by using that. In addition, the infection-free equilibrium V0 of the model is locally asymptotically stable (LAS) if \({{\cal R}_c} < 1\) and linearly stable if \({{\cal R}_c} = 1\); while V0 is unstable if \({{\cal R}_c} > 1\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信