基于相位共轭和超透镜的声源定位

IF 0.9 4区 物理与天体物理 Q4 ACOUSTICS
S. Liu, M. Li, R. Zhao
{"title":"基于相位共轭和超透镜的声源定位","authors":"S. Liu,&nbsp;M. Li,&nbsp;R. Zhao","doi":"10.1134/S1063771023600213","DOIUrl":null,"url":null,"abstract":"<p>In order to break through the diffraction limit of traditional sound sources, an idea of far-field super-resolution imaging based on acoustic superlens is proposed, that is, acoustic super-lens is used to transmit near-field sound field information to the far-field, and far-field super-resolution imaging is realized by combining phase conjugate algorithm. In this paper, the sound source localization effect of the two-dimensional honeycomb acoustic superlens of water/mercury material is systematically studied, and the sub-wavelength imaging with a resolution of 0.22λ is obtained by simulating the point sound source imaging through numerical simulation, and the imaging principle of the refractive index <i>n</i> = –1 configuration is explained by combining the imaging principle of flat lens imaging and the law of refraction. A multi-lens was designed for far-field localization of point sound sources, and sub-wavelength imaging with a resolution of 0.19 λ was obtained.</p>","PeriodicalId":455,"journal":{"name":"Acoustical Physics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Sound Source Location Based on Phase Conjugation and Acoustic Superlens\",\"authors\":\"S. Liu,&nbsp;M. Li,&nbsp;R. Zhao\",\"doi\":\"10.1134/S1063771023600213\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In order to break through the diffraction limit of traditional sound sources, an idea of far-field super-resolution imaging based on acoustic superlens is proposed, that is, acoustic super-lens is used to transmit near-field sound field information to the far-field, and far-field super-resolution imaging is realized by combining phase conjugate algorithm. In this paper, the sound source localization effect of the two-dimensional honeycomb acoustic superlens of water/mercury material is systematically studied, and the sub-wavelength imaging with a resolution of 0.22λ is obtained by simulating the point sound source imaging through numerical simulation, and the imaging principle of the refractive index <i>n</i> = –1 configuration is explained by combining the imaging principle of flat lens imaging and the law of refraction. A multi-lens was designed for far-field localization of point sound sources, and sub-wavelength imaging with a resolution of 0.19 λ was obtained.</p>\",\"PeriodicalId\":455,\"journal\":{\"name\":\"Acoustical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063771023600213\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063771023600213","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 为了突破传统声源的衍射限制,提出了一种基于声学超级透镜的远场超分辨成像思路,即利用声学超级透镜将近场声场信息传输到远场,结合相位共轭算法实现远场超分辨成像。本文系统研究了水/汞材料二维蜂窝声学超级透镜的声源定位效果,通过数值模拟点声源成像,得到了分辨率为 0.22λ 的亚波长成像,并结合平面透镜成像原理和折射定律解释了折射率 n = -1 构型的成像原理。设计了用于点声源远场定位的多透镜,获得了分辨率为 0.19 λ 的亚波长成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Sound Source Location Based on Phase Conjugation and Acoustic Superlens

The Sound Source Location Based on Phase Conjugation and Acoustic Superlens

The Sound Source Location Based on Phase Conjugation and Acoustic Superlens

In order to break through the diffraction limit of traditional sound sources, an idea of far-field super-resolution imaging based on acoustic superlens is proposed, that is, acoustic super-lens is used to transmit near-field sound field information to the far-field, and far-field super-resolution imaging is realized by combining phase conjugate algorithm. In this paper, the sound source localization effect of the two-dimensional honeycomb acoustic superlens of water/mercury material is systematically studied, and the sub-wavelength imaging with a resolution of 0.22λ is obtained by simulating the point sound source imaging through numerical simulation, and the imaging principle of the refractive index n = –1 configuration is explained by combining the imaging principle of flat lens imaging and the law of refraction. A multi-lens was designed for far-field localization of point sound sources, and sub-wavelength imaging with a resolution of 0.19 λ was obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acoustical Physics
Acoustical Physics 物理-声学
CiteScore
1.60
自引率
50.00%
发文量
58
审稿时长
3.5 months
期刊介绍: Acoustical Physics is an international peer reviewed journal published with the participation of the Russian Academy of Sciences. It covers theoretical and experimental aspects of basic and applied acoustics: classical problems of linear acoustics and wave theory; nonlinear acoustics; physical acoustics; ocean acoustics and hydroacoustics; atmospheric and aeroacoustics; acoustics of structurally inhomogeneous solids; geological acoustics; acoustical ecology, noise and vibration; chamber acoustics, musical acoustics; acoustic signals processing, computer simulations; acoustics of living systems, biomedical acoustics; physical principles of engineering acoustics. The journal publishes critical reviews, original articles, short communications, and letters to the editor. It covers theoretical and experimental aspects of basic and applied acoustics. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信